Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T05:48:48.018Z Has data issue: false hasContentIssue false

Tissue specific effects of ommochrome pathway mutations in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Rick Tearle
Affiliation:
Department of Genetics and Human Variation, La Trobe University, Bundoora, Victoria 3083, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The tissue-specific effects of 17 mutations affecting the synthesis of brown eye pigment (xanthommatin) have been investigated by combining them with chocolate and red cells, two mutations causing ectopic pigmentation of the Malpighian tubules and larval fat body (which normally only synthesize pigment precursors). The majority of mutations block the pigmentation of four organs: the normally pigmented eyes and ocelli, and ectopically pigmented tubules and fat body. They represent genes that would appear to be required for the normal operation of the pathway per se and are likely to encode structural proteins. Mutations at 5 loci affect pigmentation of a subset of organs: cd and po affect only the eyes and ocelli; kar affects the eyes, ocelli and fat body; car causes excretion of pigment from tubules; and z affects pigmentation of the eyes alone. Of these loci, only z has been shown to encode a regulatory protein and the role of the remaining four gene products is not clear. Two mutations affecting the red eye pigments (drosopterins), bw and mal, do not substantially perturb brown pigment synthesis in any of the four organs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Beadle, G. W. (1937 a). Development of eye colours in Drosophila: fat bodies and Malpighian tubes as sources of diffusible substances. Genetics 22, 146152.Google Scholar
Beadle, G. W. (1937 b). Development of eye colours in Drosophila: fat bodies and Malpighian tubes in relation to diffusible substances. Genetics 11, 587611.CrossRefGoogle Scholar
Beadle, G. W. & Ephrussi, B. (1936). The differentiation of eye pigments in Drosophila as studied by transplantation. Genetics 21, 225247.CrossRefGoogle ScholarPubMed
Beadle, G. W. & Ephrussi, B. (1937). Development of eye colours in Drosophila: diffusible substances and their interrelations. Genetics 22, 7686.CrossRefGoogle ScholarPubMed
Beadle, G. W. & Law, L. W. (1938). Influence on eye colour of feeding diffusible substances to Drosophila melanogaster. Proceedings of the Society for Experimental Biology 37, 621623.CrossRefGoogle Scholar
Bingham, P. M. & Zachar, Z. (1985). Evidence that two mutations, wDzl and zl, affecting synapsis dependent genetic behaviour of white are transcriptional regulatory mutants. Cell 40, 819827.CrossRefGoogle Scholar
Cagan, R. L. & Ready, D. F. (1989). The emergence of order in the Drosophila pupal retina. Developmental Biology 136, 346362.CrossRefGoogle ScholarPubMed
Ferré, J., Silva, F. J., Real, M. D. & Mensua, J. L. (1986). Pigment patterns in mutants affecting the biosynthesis of pteridines and xanthommatin in Drosophila melanogaster. Biochemical Genetics 24, 545569.CrossRefGoogle ScholarPubMed
Glassman, E. (1956). Knyurenine formamidase in mutants of Drosophila melanogaster. Genetics 41, 566574.CrossRefGoogle Scholar
Grell, E. H. (1961). The genetics and biochemistry of red fat cells in Drosophila melanogaster. Genetics 46, 925933.CrossRefGoogle ScholarPubMed
Howells, A. J., Summers, K. M. & Ryall, R. L. (1977). Developmental patterns of 3-hydroxykynurenine accumulation in white and variour other eye colour mutants of Drosophila melanogaster. Biochemical Genetics 15, 10491059.CrossRefGoogle Scholar
Jack, J. W. & Judd, B. H. (1979). Allelic pairing and gene regulation. A model for the zeste-white interaction in Drosophila melanogaster. Proceedings of the National Academy of Sciences 76, 13681372.CrossRefGoogle Scholar
Jones, J. C. & Lewis, E. B. (1957). The nature of certain red cells in Drosophila melanogaster. Biological Bulletin 112, 220224.CrossRefGoogle Scholar
Lifschytz, E. & Green, M. M. (1984). The zeste-white interaction: induction and genetic analysis of a novel class of zeste alleles. EMBO Journal 3, 9991004.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute of Washington Publication 627.Google Scholar
Lindsley, D. L. & Zimm, G. (1985). The genome of D. melanogaster. Part I: Genes A-K. Drosophila Information Service 62.Google Scholar
Lindsley, D. L. & Zimm, G. (1990). The genome of D. melanogaster. Part I: Genes L-Z. Drosophila Information Service 68.Google Scholar
Linzen, B. (1974). The tryptophan-ommochrome pathway in insects. Advances in Insect Physiology 10, 117246.CrossRefGoogle Scholar
Moore, G. P. & Sullivan, D. T. (1978). Biochemical and genetic characterisation of kynurenine formamidase from Drosophila melanogaster. Biochemical Genetics 16, 619633.CrossRefGoogle ScholarPubMed
Mount, S. (1987). Sequence similarity. Nature 325, 487.CrossRefGoogle ScholarPubMed
Nissani, M. (1975). Cell lineage analysis of kynurenine producing organs in Drosophila melanogaster. Genetical Research 26, 6372.CrossRefGoogle ScholarPubMed
O'Hare, K., Murphy, C., Levis, R. & Rubin, G. M. (1985). DNA sequence of the white locus of D. melanogaster. Journal of Molecular Biology 180, 437455.CrossRefGoogle Scholar
Okamoto, H., Yamamoto, S., Nozaki, M. & Hayaishi, O. (1967). On the submitochondrial localisation of L-kynurenine-3-hydroxylase. Biochemical and Biophysical Research Communications 26, 309314.CrossRefGoogle ScholarPubMed
Parisi, G., Carfagna, M. & D'Amora, D. (1976). Biosynthesis of dihydroxanthyommatin in Drosophila melanogaster: possible involvement of xanthine dehydrogenase. Insect Biochemistry 6, 567570.CrossRefGoogle Scholar
Phillips, J. P. & Forrest, H. S. (1980). Ommochromes and pteridines. In: The Genetics and Biology of Drosophila, vol. 2d (ed. Ashburner, M. and Wright, T. R. F.), pp. 542623.Google Scholar
Rizki, T. M. & Rizki, R. M. (1968). Allele specific patterns of suppression of the vermilion locus in Drosophila melanogaster. genetics 59, 477485.CrossRefGoogle Scholar
Searles, L. L. & Voelker, R. A. (1986). Molecular characterisation of the Drosophila vermilion locus and its suppressible alleles. Proceedings of the National Academy of Sciences 83, 404408.CrossRefGoogle ScholarPubMed
Stark, W. S., Srygley, R. B. & Greenberg, R. M. (1981). Analysis of a compound eye mosaic of outer rhabdomeres absent marked with cardinal. Drosophila Information Service 56, 132133.Google Scholar
Stratakis, E. (1981). Submitochondrial localisation of kynurenine-3-hydroxylase from ovaries of Ephestia kuhniella. Insect Biochemistry 11, 735741.CrossRefGoogle Scholar
Sullivan, D. T. & Kitos, R.J. (1976). Developmental regulation of tryptophan catabolism in Drosophila. Insect Biochemistry 6, 649655.CrossRefGoogle Scholar
Sullivan, D. T., Kitos, R.J. & Sullivan, M. C. (1973). Developmental and genetic studies on kynurenine hydroxylase from Drosophila melanogaster. Genetics 75, 651661.CrossRefGoogle ScholarPubMed
Sullivan, D. T. & Sullivan, M. C. (1975). Transport defects as the physiological basis for eye colour mutants of Drosophila melanogaster. Biochemical Genetics 13, 603613.CrossRefGoogle ScholarPubMed
Summers, K. M., Howells, A. J. & Pyliotis, N. A. (1982). Biology of eye pigmentation in insects. Advances in Insect Physiology 16, 119166.CrossRefGoogle Scholar
Tearle, R. G., Belote, J. M., McKeown, M., Baker, B. S. & Howells, A. J. (1989). Cloning and characterisation of the scarlet gene of D. melanogaster. Genetics 122, 595606.CrossRefGoogle Scholar
Tomlinson, A. & Ready, D. F. (1987). Neuronal differentiation in the Drosophila ommatidium. Developmental Biology 120, 336376.CrossRefGoogle ScholarPubMed
Walker, A. R., Howells, A. J. & Tearle, R. G. (1986). Cloning and characterisation of the vermilion gene of D. melanogaster. Molecular and General Genetics 202, 102107.CrossRefGoogle Scholar
Wiley, K. & Forrest, H. S. (1981). Terminal synthesis of xanthommatin in Drosophila melanogaster. IV. Enzymatic and non-enzymatic catalysis. Biochemical Genetics 19, 12111221.CrossRefGoogle Scholar