Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:29:51.987Z Has data issue: false hasContentIssue false

Timing imbalance in the meiosis of the F1 hybrid Oryza sativa × O. australiensis

Published online by Cambridge University Press:  14 April 2009

S. V. S. Shastry
Affiliation:
Division of Botany, Indian Agricultural Research Institute, New Delhi, India
D. R. Ranga Rao
Affiliation:
Division of Botany, Indian Agricultural Research Institute, New Delhi, India
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The meiosis in the F1 hybrid Oryza saliva × O. australiensis was studied. Contrary to the observations of Gopalakrishnan (1959), true allosyndetic bivalents were not found at metaphase I. The most frequent associations were non-chiasmatic, end-to-end pseudobivalents. Autosyndetic bivalents were recorded mostly in the complement belonging to O. sativa, which are distinguishable by their smallness and lighter staining. The meiotic cycle exhibits timing imbalance with earlier condensation, and possibly migration, of the univalents belonging to O. australiensis. The data on meiotic pairing in the F1 hybrid and the comparative morphology of O. sativa, O. officinalis and O. australiensis inicate that the last species is the most primitive member, having originated from the pre-Sativa and pre-Officinalis complex.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

References

REFERENCES

Darlington, C. D. (1928). Studies in Prunus, I and II. J. Genet. 19, 213256.CrossRefGoogle Scholar
Darlington, C. D. (1937). Recent Advances in Cytology, 2nd ed.London: Churchill.Google Scholar
Gaul, H. (1959). A critical survey of genome analysis. In Proc. First International Wheat Genet. Symp., Winnipeg, Canada, pp. 194206.Google Scholar
Ghose, R. L. M., Ghatge, M. B. & Subrahmanyan, V. (1956). Rice in India. Indian Council of Agricultural Research, New Delhi.Google Scholar
Gopalakrishnan, R. (1959). Cytogenetical studies on interspecific hybrids in the genus Oryza. (Unpublished thesis.) Indian Agricultural Research Institute, New Delhi.Google Scholar
Håkansson, A. (1940). Die Meiosis bei verschiedenen Mutanten von Godetia whitneyi. Lunds Univ. Arsskrift, N.F. Adv. 2, 36, 137.Google Scholar
Hu, C. H. (1958). Studies on chromosome complement of cultivated rice. J. agric. Ass. China (Chinese), 21, 1123.Google Scholar
Hyde, B. B. (1953). Differentiated chromosomes in Plantago Ovata. Amer. J. Bot. 44, 809815.CrossRefGoogle Scholar
Korah, M. (1961). Cytotaxonomy and evolutionary trends in some species and varieties of Oryza. Proc. 48th Indian Sci. Congr. Roorkee, India, Abstracts, p. 306.Google Scholar
Lawrence, W. J. C. (1929). Genetics and cytology of Dahlia species. J. Genet. 21, 125159.CrossRefGoogle Scholar
Morinaga, T. & Fukushima, E. (1934). Cytogenetical studies on Oryza sativa L. I: Studies on the haploid plant of Oryza sativa. Jap. J. Bot. 7, 73106.Google Scholar
Nandi, H. K. (1936). Chromosome morphology, secondary association and origin of cultivated rice. J. Genet. 33, 315336.CrossRefGoogle Scholar
Natarajan, A. T. & Swaminathan, M. S. (1958). Haploidy induced by radiations in wheat. Experientia, 14, 336337.CrossRefGoogle Scholar
Östergren, G. & Vigfusson, E. (1953). On position correlations of univalents and quasibivalents formed by sticky univalents. Hereditas, 39, 3350.CrossRefGoogle Scholar
Person, C. (1955). An analytical study of chromosome behaviour in a wheat haploid. Canad. J. Bot. 33, 1130.CrossRefGoogle Scholar
Richharia, R. H. (1960). Origins of cultivated rices. Indian J. Genet. 20, 114.Google Scholar
Riley, R. & Chapman, V. (1957). Haploids and polyhaploids in Aegilops and Triticum. Heredity, 11, 195207.CrossRefGoogle Scholar
Shah, S. S. (1955). Morphological and anatomical studies in the genus Oryza. (Unpublished thesis.) Indian Agricultural Research Institute, New Delhi.Google Scholar
Shastry, S. V. S., Rao, D. R. R. & Misra, R. N. (1960). Pachytene analysis in Oryza. I: Chromosome morphology in Oryza sativa. Indian J. Genet. 20, 1521.Google Scholar
Shastry, S. V. S., Sharma, S. D. & Rao, D. R. R. (1960). Cytology of an inter-sectional hybrid in Oryza. Naturwissenschaften, 24, 608609.CrossRefGoogle Scholar
Shastry, S. V. S. & Mohan Rao, P. K. (1961). Pachytene analysis in the genus Oryza. IV: Karyomorphology in O. australiensis, O. glaberrima and O. stapfii. Proc. Indian Acad. Sci., Section B (in press).CrossRefGoogle Scholar
Shastry, S. V. S. & Misra, R. N. (1961). Pachytene analysis in japonica-indica rice hybrids. Curr. Sci. 30, 7071.Google Scholar
Stebbins, G. L. Jr (1950). Variation and Evolution in Plants. New York: Columbia University Press.CrossRefGoogle Scholar
Stebbins, G. L. Jr (1958). Longevity, habit and release of variability in the higher plants. Cold Spr. Harb. Symp. quant. Biol. 23, 365378.CrossRefGoogle Scholar
Venkateswarlu, J. (1961). Cytotaxonomic studies in Coix. In Symp. Cytogenetical Evolution of Angiosperms, Proc. 48th Indian Sci. Congr. Roorkee, India.Google Scholar
Walters, M. S. (1950). Spontaneous breakage and reunion of meiotic chromosomes in the hybrid, Bromus trinii × B. maritimus. Genetics, 35, 1137.CrossRefGoogle Scholar
Walters, M. S. (1954). A study of pseudobivalents in meiosia of two interspecific hybrids of Bromus. Amer. J. Bot. 41, 160171.CrossRefGoogle Scholar
Yao, Y., Henderson, M. T. & Jodon, N. E. (1958). Cryptic structural hybridity as a probable cause of sterility in intervarietal hybrids of cultivated rice, Oryza sativa L. Cytologia, 23, 4655.CrossRefGoogle Scholar