Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T04:14:11.757Z Has data issue: false hasContentIssue false

Tandem duplications in Drosophila melanogaster: III. Intrachromosomal exchange of a heterozygous tandem duplication

Published online by Cambridge University Press:  14 April 2009

Wolf-Ekkehard Kalisch
Affiliation:
Lehrstuhl für Genetik der Ruhr-Universität Bochum, D-463 Bochum, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During meiosis the two parts of a tandem duplication are able to pair in a double loop instead of pairing with the corresponding region of the homologous chromosome. The frequency of intrachromosomal exchange within this double loop was measured in heterozygous females of tandem duplication Dp(1; 1)Gr by the phenotypes of the exceptional F1 males. The intrachromosomal exchange frequency is increased significantly by both the ‘interchromosomal effect’ of heterozygous inversions in the autosomes and by a double inversion in the homologous X chromosome. Distribution of the exchange events depends on the pairing situation and its frequency within the double loop. The analysis of clusters of intrachromosomal recombinants observed favours the assumption that this exchange type is exclusively a meiotic event.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

References

REFERENCES

Anderson, E. G. (1925). Crossing over in a case of attached-X chromosomes in Drosophila melanogaster. Genetics 10, 403417.Google Scholar
Cooper, K. W., Zimmering, S. & Krivshenko, J. (1955). Interchromosomal effects and segregation. Proceedings of the National Academy of Science, U.S.A. 41, 911914.Google Scholar
Green, M. M. (1968). Some genetic properties of intrachromosomal recombination. Molecular and General Genetics 103, 209217.Google Scholar
Green, M. M. (1969). Controlling element mediated transpositions of the white gene in Drosophila melanogaster. Genetics 61, 429441.CrossRefGoogle Scholar
Green, M. M. (1973). Some observations and comments on mutable and mutator genes in Drosophila. Genetics Supplement 73, 187194.Google Scholar
Kalisch, W.-E. (1970). Über eine mutable white-Inversion bei Drosophila melanogaster. Molecular and General Genetics 107, 336350.CrossRefGoogle ScholarPubMed
Kalisch, W.-E. (1973). Tandem duplications in Drosophila melanogaster. I. Interchromosomal effects of a heterozygous tandem duplication. Chromosoma (Berlin) 41, 237242.CrossRefGoogle ScholarPubMed
Kalisch, W.-E. (1975). Tandem duplications in Drosophila melanogaster. II. Meiotic pairing and exchange in heterozygous tandem duplications. Theoretical and Applied Genetics 46, 169180.Google Scholar
Kalisch, W.-E. & Becker, H. J. (1970). Über eine Reihe mutabler Allele des white-Locus bei Drosophila melanogaster. Molecular and General Genetics 107, 321335.Google Scholar
Laughnan, J. R. & Gabay, S. J. (1970). Observations on genetic properties on intrachromosomal recombination. Molecular and General Genetics 108, 9396.CrossRefGoogle ScholarPubMed
Laughnan, J. R., Gabay, S. J. & Montgomery, J. N. (1971). Genetic basis for the exceptional events in Dp(l; l)MNB-8 Drosophila mel. males. Drosophila Information Service 47, 64.Google Scholar
Lindsley, D. L. & Grell, E. H. (1967). Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington Publication, no. 627.Google Scholar
Peterson, H. M. & Laughnan, J. R. (1963 a). Intrachromosomal exchange at the Bar locus in Drosophila. Proceedings of the National Academy of Science, U.S.A. 50, 126133.Google Scholar
Peterson, H. M. & Laughnan, J. B. (1963 b). Premeiotic exchange within a duplication X. chromosome in Drosophila melanogaster males. Genetics 50, 275276.Google Scholar
Sturtevant, A. H. (1919). Contributions to the genetics of Drosophila melanogaster. III. Inherited linkage variations in the second chromosome. Carnegie Institution of Washington Publication, no. 278, 305341.Google Scholar