Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:48:12.510Z Has data issue: false hasContentIssue false

Susceptibility to phenytoin-induced cleft lip with or without cleft palate: many genes are involved

Published online by Cambridge University Press:  14 April 2009

I. Jill Karolyi
Affiliation:
Departments of Human Genetics and Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109–0618
Sharon Liu
Affiliation:
Departments of Human Genetics and Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109–0618
Robert P. Erickson*
Affiliation:
Departments of Human Genetics and Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109–0618
*
* To whom correspondence should be addressed.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a search for genetic differences in susceptibility to cleft lip with or without cleft palate [CL(P)], congenic and recombinant inbred strains of mice were treated with phenytoin or control injections. Of six loci tested, five were found to affect susceptibility to phenytoin-induced and/or sporadic CL(P): (1) the major histocompatibility locus, H-2; (2) the locus controlling β2-microglobulin, B2m; (3) a locus controlling β-glucuronidase, Gus; (4) the locus controlling N-acetyl transferase, Nat; and (5) the locus for brown pigmentation, b. B2m and Gus only affected the sporadic incidence of CL(P), while the b locus only affected phenytoin-induced incidence of CL(P). Three of these loci are also known to affect glucocorticoid-induced isolated cleft palate (CP), but different alleles of the loci are involved. Phenytoin did not affect levels of adenosine 3′,5′-cyclic monophosphate (cAMP) in palates and tongues of day 15 fetuses. A comparison of glucocorticoid receptor parameters with the incidence of phenytoin-induced CL(P) found no correlation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Atlas, S. A., Zweier, J. L. & Nebert, D. W. (1980). Genetic differences in phenytoin pharmacokinetics: in vivo clearance and in vitro metabolism among inbred strains of mice. Developmental Pharmacology and Therapeutics 1, 281304.CrossRefGoogle ScholarPubMed
Bailey, D. W. (1971). Recombinant-inbred strains: an aid to finding identify, linkage, and function of histocompatibility and other genes. Transplantation 11, 325327.CrossRefGoogle Scholar
Bancroft, T. A. (1968). Topics in Intermediate Statistical Methods, vol. 1. Ames, Iowa: Iowa State University Press.Google Scholar
Barr, M. Jr. Poznanski, A. K. & Schmickel, R. D. (1974). Digital hypoplasia and anticonvulsants during gestation: a teratogenic syndrome? Journal of Pediatrics 84, 254256.CrossRefGoogle ScholarPubMed
Biddle, F. G. (1977). 6-Aminonicotinamide-induced cleft palate in the mouse: the nature of the difference between the A/J and C57BL/6J strains in frequency of response and its genetic basis. Teratology 16, 301312.CrossRefGoogle Scholar
Bonaiti, C., Briard, M. L., Feingold, J., Pavy, B., Psaume, J., Migne-Tufferaud, G. & Kaplan, J. (1982). An epidemiological and genetic study of facial clefting in France. I. Epidemiology and frequency in relatives. Journal of Medical Genetics 19, 815.CrossRefGoogle Scholar
Bonner, J. J., Terasaki, P. I., Thompson, P., Holve, L. M., Wilson, L., Ebbin, A. J. & Slavkin, H. C. (1978). HLA phenotype frequencies in individuals with cleft lip and/or cleft palate. Tissue Antigens 12, 228232.CrossRefGoogle ScholarPubMed
Chabora, H. J. & Horowitz, S. L. (1974). Cleft lip and cleft palate: one genetic system. Oral Surgery 38, 181186.CrossRefGoogle ScholarPubMed
Ching, C. S. II. & Chung, C. S. (1974). A genetic Study of cleft lip and palate in Hawaii. I. Interracial crosses. American Journal of Human Genetics 26, 162176.Google ScholarPubMed
Dixon, W. J. & Massey, F. J. (1969). Introduction to Statistical Analysis, 3rd ed., p. 243. New York: McGraw-Hill.Google Scholar
Duddleson, W. C., Midgley, A. R. Jr & Niswender, G. D. (1972). Computer program sequence for analysis and summary of radioimmunoassay data. Computers and Biomedical Research 5, 205217.CrossRefGoogle ScholarPubMed
Erickson, R. P., Butley, M. S. & Sing, C. F. (1979). H-2 and non-H-2 determined strain variation in palatal shelf and tongue adenosine 3′: 5′ cyclic monophosphate. Journal of Immunogenetics 6, 253262.CrossRefGoogle ScholarPubMed
Erickson, R. P., Pairitz, G. L., Karolyi, J. M., Kapur, J. J., Odenheimer, D. J., Schultz, J. S. & Sing, C. F. (1985). HLA-B18 is associated with decreased levels of isoproterenol-stimulated cAMP in lymphocytes. American Journal of Human Genetics 37, 124132.Google ScholarPubMed
Frendsen, E. K. & Krishna, G. (1977). A simple ultrasensitive method for the assay of cyclic AMP and cyclic GMP in tissues. Life Sciences 18, 529542.CrossRefGoogle Scholar
Goldman, A. S., Baker, M. K. & Grasser, D. L. (1983). Susceptibility to phenytoin-induced cleft palate in mice is influenced by genes linked to H-2 and H-3. Immunogenetics 18, 1722.CrossRefGoogle ScholarPubMed
Goldman, A. S., Baker, M. K., Tomassini, N. & Hummeler, K. (1982). Occurrence of cleft palate, micrognathia, and agnathia in selected strains of cortisone- and phenytointreated mice. Journal of Craniofacial Genetics and Developmental Biology 2, 277284.Google ScholarPubMed
Hanson, J. W., Myrianthopoulos, N. C., Sedgwick Harvey, M. A. & Smith, D. W. (1976). Risks to the offspring of women treated with hydantoin anticonvulsants, with emphasis on the fetal hydantoin syndrome. Journal of Pediatrics 89, 662668.CrossRefGoogle Scholar
Hanson, J. W. & Smith, D. W. (1975). The fetal hydantoin syndrome. Journal of Pediatrics 87, 285290.CrossRefGoogle ScholarPubMed
Katsumata, M., Gupta, C., Baker, M. K., Sussdorf, C. E. & Goldman, A. S. (1982). Diphenylhydantoin: an alternative ligand of a glucocorticoid receptor affecting prostaglandin generation in A/J mice. Science 218, 13131315.CrossRefGoogle ScholarPubMed
Liu, S. J. & Erickson, R. P. (1986 a). Genetic differences among the A/J × C57BL/6J recombinant inbred mouse lines and their degree of association with glucocorticoid induced cleft palate. Genetics 113, 745754.CrossRefGoogle Scholar
Liu, S. J. & Erickson, R. P. (1986 b). Genetics of glucocorticoid receptor levels in recombinant inbred lines of mice. Genetics 113, 735744.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Massey, K. M. (1966). Teratogenic effects of diphenylhydantom sodium. Journal of Oral Therapeutic Pharmacology 2, 380385.Google Scholar
Meruelo, D. & Edidin, M. (1975). Association of mouse liver adenosine 3′: 5′-cyclic monophosphate (cyclic AMP) levels with Histocompatibility-2 genotype. Proceedings of the National Academy of Sciences, USA 72, 26442648.CrossRefGoogle Scholar
Monson, R. R., Rosenberg, L., Hartz, S. C., Shapiro, S., Heinonen, O. P. & Slone, D. (1973). Diphenylhydantoin and selected congenital malformations. New England Journal of Medicine 289, 10491052.CrossRefGoogle ScholarPubMed
Nesbitt, M. N. & Skamene, E. (1984). Recombinant inbred mouse strains derived from A/J and C57BL/6J: a tool for the study of genetic mechanisms in host resistance to infection and malignancy. Journal of Leukocyre Biology 36, 357364.CrossRefGoogle Scholar
Paigen, K., Swank, R. T., Tomino, S. & Ganschow, R. E. (1975). The molecular genetics of mammalian glucuronidase. Journal of Cell Physiology 85, 379392.CrossRefGoogle ScholarPubMed
Pratt, R. M., Salomon, D. S., Diewert, V. M., Erickson, R. P., Burns, R. & Brown, K. S. (1980). Cortisone-induced cleft palate in the brachymorphic mouse. Teratogenesis, Carcinogenesis and Mutagenesis 1, 1523.CrossRefGoogle ScholarPubMed
Rapaport, F. T., Bach, F. H., Bachraroff, R. J., McCarthy, J. G., Raisbeck, A. P., Egelandsdal, B. & Converse, J. M. (1979). The major histocompatibility complex (HLA) as a genetic marker in human craniofacial anomalies. Tissue Antigens 14, 407421.CrossRefGoogle ScholarPubMed
Shapiro, S., Slone, D., Hartz, S. C., Rosenberg, L., Siskind, V., Monson, R.Mitchell, A. A. & Heinonen, O. P. (1976). Anticonvulsants and parental epilepsy in the development of birth defects. Lancet i, 272275.CrossRefGoogle Scholar
Siegel, S. (1956). Non Parametric Statistics for the Behavioural Sciences, pp. 96104, 111127, 193194. New York: McGraw-Hill.Google Scholar
Strickler, S. M., Dansky, L. V., Miller, M. A., Seni, M. H., Andermann, E. & Spielberg, S. P. (1985). Genetic predisposition to phenytoin-induced birth defects. Lancet ii, 746749.CrossRefGoogle Scholar
Sulik, K. K., Johnson, M. C., Ambrose, L. J. & Dorgan, R. D. (1980). Mechanisms of phenytoin-induced malformations in a mouse model in Phenytoin-induced Teratology and Gingival Pathology (ed. Hassell, T. M., Johnston, M. C., and Dudley, K. H.), pp. 6774. New York: Raven Press.Google Scholar
Swank, R. T. & Bailey, D. W. (1973). Recombinant-inbred lines, value in the genetic analysis of biochemical variants. Science 181, 12491252.CrossRefGoogle ScholarPubMed
Taylor, B. A. (1978). Recombinant-inbred strains: use in gene mapping. In Origins of Inbred Mice (ed. Morse, H.), pp. 423438. New York: Academic Press.CrossRefGoogle Scholar
VanDyke, D., Goldman, A., Spielmann, R., Zmijewski, C. & Oka, S. (1980). Segregation of HLA in sibs with cleft lip or cleft lip and cleft palate: evidence against genetic linkage. Cleft Palate Journal 17, 189193.Google Scholar
Vekemans, M., Taylor, B. A. & Fraser, F. C. (1981). The susceptibility to cortisone-induced cleft palate of recombinant inbred strains of mice: lack of association with the H-2 haplotype. Genetical Research, Cambridge 38, 327331.CrossRefGoogle ScholarPubMed
WHO Scientific Group (1970). Genetic Factors in Congenital Malformations: Report of a WHO Scientific Group. World Health Organization Technical Report Series 438, 1117Google Scholar