Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T07:57:50.114Z Has data issue: false hasContentIssue false

The survival of RP 1–1 in Escherichia coli and the influence of the rec and polA genes on the process

Published online by Cambridge University Press:  14 April 2009

Agnes Moillo-Batt
Affiliation:
Department of Bacteriology, University of Bristol, University Walk, Bristol, BS8 1TD, England
M. H. Richmond
Affiliation:
Department of Bacteriology, University of Bristol, University Walk, Bristol, BS8 1TD, England
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The survival of the plasmid RP 1–1 in E. coli depends on the presence of a functional polA gene. Unlike other plasmids that have this requirement, the replication of RP 1–1 is inhibited by chloramphenicol. RP 1–1 cannot be inherited by E. coli recA mutants, and inactivation of the recA gene product in a recAts mutant leads to destruction of the plasmid. RP 1–1 cannot be inherited by recB or recC E. coli unless the strains also carry a suppressor of these genes, such as sbcA or sbcB. The pattern of replication of RP 1–1 in E. coli K12 and its mutants suggests that the survival of this plasmid in this species is the outcome of a balance between DNA polymerase I-specified replication and exonuclease destruction.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

References

REFERENCES

Barbour, S. D., Nagaishi, H., Templin, A. & Clark, A. J. (1970). Biochemical and genetic studies of recombination proficiency in E. coli. II. Rec+ mutations. Proceedings of the National Academy of Sciences, U.S.A. 67, 128135.CrossRefGoogle Scholar
Chandler, P. M. & Krishnapillai, V. (1974). Phenotypic properties of R-factors of Pseudomonas aeruginosa: R factors readily transferable between Pseudomonas and the Enterobacteriaceae. Genetical Research, Cambridge 23, 239250.CrossRefGoogle ScholarPubMed
Clark, A. J. (1973 a). Progress towards a metabolic interpretation of genetic recombination of E. coli and bacteriophage lambda. Genetics 78, 259271.CrossRefGoogle Scholar
Clark, A. J. (1973 b). Recombination deficient mutants of E. coli and other bacteria. Annual Review of Genetics 7, 6786.CrossRefGoogle ScholarPubMed
Clewell, D. B. (1972). Nature of colE1 plasmid replication in E. coli in the presence of chloramphenicol. Journal of Bacteriology 110, 667676.CrossRefGoogle Scholar
Emmerson, P. T., McAthey, P. & Strike, P. (1974). Some properties of Escherichia coli K12 defective in DNA polymerase I and exonuclease V. Molecular and General Genetics 130, 2938.CrossRefGoogle ScholarPubMed
Ingram, L., Sykes, R. B., Grinsted, J., Saunders, J. R. & Richmond, M. H. (1972). A transmissible resistance element from a strain of Pseudomonas aeruginosa containing no detectable extrachromosomal DNA. Journal of General Microbiology 72, 269279.CrossRefGoogle ScholarPubMed
Kingsbury, D. T. & Helinski, D. R. (1970). DNA polymerase as a requirement for the maintenance of the bacterial plasmid colicinogenie factor E1. Biochemical and Biophysical Research Communications 41, 15381544.CrossRefGoogle Scholar
Kushner, S. R., Nagaishi, H., Templin, A. & Clark, A. J. (1971). Genetic recombination in Escherichia coli: the role of exonuclease I. Proceedings of the National Academy of Sciences, U.S.A. 68, 824–227.CrossRefGoogle ScholarPubMed
Kushner, S. R., Nagaishi, H. & Clark, A. J. (1972). Indirect suppression of recB and recC mutations by exonuclease I deficiency. Proceedings of the National Academy of Sciences, U.S.A. 69, 13661370.CrossRefGoogle ScholarPubMed
Lloyd, R. G., Low, B., Godson, G. N., & Birge, E. A. (1974). Isolation and characterization of an Escherichia coli K12 mutant with a temperature sensitive RecA phenotype. Journal of Bacteriology 120, 407415.CrossRefGoogle ScholarPubMed
Low, B. (1968). Formation of merodiploids in matings with a class of Rec recipient strains of Escherichia coli K12. Proceedings of the National Academy of Sciences, U.S.A. 60, 160164.CrossRefGoogle ScholarPubMed
Richmond, M. H. & Mouxo-Batt, A. M. (1975). Alternative methods of survival of R-plasmids in a ‘new’ bacterial host. Proceedings of the Society for General Microbiology 3, 26.Google Scholar
Richmond, M. H. & Sykes, R. B. (1972). The chromosomal integration of a β-lactamase gene derived from the P-type R-factor RP1 in E. coli. Qenetical Research, Cambridge 20, 231237.Google Scholar
Richmond, M. H. & Sykes, R. B. (1973). The β-lactamases of Gram-negative bacteria and their possible physiological role. In Advances in Microbial Physiology, vol. 9 (ed. Rose, A. H. and Tempest, D. W.), pp. 3188. London and New York: Academic Press.Google Scholar
Stanisich, V. S. & Richmond, M. H. (1975). Gene transfer in the Genus Pseudomonas. In Biochemistry and Genetics of Pseudomonas (ed. Clarke, P. H. and Richmond, M. H.), pp. 163190. London and New York: John Wiley.Google Scholar