Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T23:04:43.336Z Has data issue: false hasContentIssue false

Survival, DNA-breakdown and induction of prophage lambda in a Escherichia coli K12 recAuvrB double mutant

Published online by Cambridge University Press:  14 April 2009

I. M. Hertman
Affiliation:
Israel Institute for Biological Research, Ness-Ziona, Israel
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cellular functions of a double mutant of Escherichia coli K 12 deficient in recombination (recA) and defective in excision of pyrimidine dimers (uvrB) have been compared to those of isogenic recA or uvrB single mutants and ‘wild type’ bacteria. A combined effect of the two mutations on cell survival both under normal conditions of growth and after exposure to ultraviolet light or mitomycin C was demonstrated. The ratio of optical density to the number of colony formers in growing cultures of the double mutant is three times greater than in similar cultures of the recA single mutant and 9 times greater than in either uvrB or in ‘wild type’ cultures. The doubling time in growing recA uvrB cultures is 90 min, compared to 60 min, for the recA single mutant and 40 min for the uvrB single mutant and ‘wild type’ bacteria. Growing cultures of recA uvrBcI857) bacteria contain a substantial fraction of cells which are unable to form colonies at 32 °C, but produce phage when heated to 42 °C. No such cells were found in cultures of the single mutants or the ‘wild type’ bacteria lysogenic for λc1857. The double mutant is 10 times more sensitive to ultraviolet light and twice more sensitive to mitomycin C than the recA single mutant. In contrast to recA bacteria, exposure of the double mutant to mitomycin C induces little additional breakdown of cellular DNA. Induction of the prophage by mitomycin C is, however, prevented in both recA uvrB (λ) and recA (λ) bacteria. Exposure to mitomycin C creates conditions which render the prophage inducible by a newly transduced ree A gene. This effect of mitomycin C persists and can be revealed in complete medium at 37 °C after 100 min of incubation. The decay of the prophage, in cells exposed to mitomycin C, proceeds at a similar rate in both the double mutant and the recA single mutant. The inability of recA lysogens to be induced to phage production is discussed in the light of the present findings.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

References

REFERENCES

Appleyard, R. K. (1954). Segregation of λ lysogeniciby during bacterial recombination in E. coli K12. Genetics 39, 429439.CrossRefGoogle Scholar
Boyce, R. P. & Howard-Flanders, P. (1964). Genetics of DNA breakdown and repair in E. coli K12 treated with mitomycin C or ultraviolet light. Z. VererbLehre 95, 345350.Google ScholarPubMed
Brooks, K. & Clark, A. J. (1967). Behaviour of bacteriophage Lambda in a recombination deficient mutant of Escherichia coli K12. J. Viral. 1, 283293.CrossRefGoogle Scholar
Clark, A. J., Chamberlin, M., Boyce, R. P. & Howard-Flanders, P. (1966). Abnormal metabolic response to ultraviolet light of a recombination deficient mutant of Escherichia coli. J. malec. Biol. 19, 442454.CrossRefGoogle ScholarPubMed
Clark, A. J. & Marqulies, A. D. (1965). Isolation and characterization of recombination-deficient mutants of Escherichia coli K12. Proc. natn. Acad. Sci. U.S.A. 53, 451459.CrossRefGoogle ScholarPubMed
Emerson, P. T. & Howard-Flanders, P. (1967). Cotransduction with thy of a gene required for genetic recombination in Escherichia coli K12. J. Bact. 93, 17291731.CrossRefGoogle Scholar
Fuerst, C. R. & Siminovitch, L. (1965). Characterization of an unusual defective lysogenic strain of Escherichia coli K12 (λ). Virology 27, 449451.CrossRefGoogle Scholar
Goldthwait, D. & Jacob, F. (1964). Sur le máchanism de l'induction du developpement du prophage chez les bactèries lysogènes. C. r. hebd. Séanc. Acad. Soi., Paris 259, 661664.Google Scholar
Hertman, I. M. (1967). Isolation and characterization of a recombination deficient Hfr strain. J. Bact. 93, 580583.CrossRefGoogle ScholarPubMed
Hertman, I. M. & Luria, S. E. (1967). Transduction studies on the role of a rec + gene in the ultraviolet induction of prophage Lambda. J. molec. Biol. 23, 117133.CrossRefGoogle ScholarPubMed
Howard-Flanders, P. (1968). DNA repair. Ann. Rev. Biochem. 37, 175199.CrossRefGoogle ScholarPubMed
Howard-Flanders, P. & Boyce, R. P. (1966). DNA repair and genetic recombination: Studies on mutants of Escherichia coli defective in these processes. Radiation Res. (Suppl.) 6, 156184.Google Scholar
Howard-Flanders, P., Boyce, R. P. & Theriot, L. (1966). Three loci in Escherichia cali K12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 53, 11191136.CrossRefGoogle Scholar
Howard-Flanders, P. & Theriot, L. (1966). Mutants of Escherichia coli K12 defective in DNA repair and in genetic recombination. Genetics 53, 11371150.CrossRefGoogle ScholarPubMed
Kaiser, A. D. (1957). Mutations in temperate bacteriophage affecting its ability to lysogenize. Virology 3, 4261.CrossRefGoogle ScholarPubMed
Lennox, E. (1955). Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190206.CrossRefGoogle ScholarPubMed
Lieb, M. (1966). Studies of heat inducible λ phage. I. Order of genetic sites and properties of mutant prophages. J. molec. Biol. 16, 149163.CrossRefGoogle ScholarPubMed
Ogawa, T. & Tomizawa, J. (1967). Abortive lysogenization of bacteriophage Lambda b 2 and residual immunity of non-lysogenic segregante. J. molec. Biol. 23, 225245.CrossRefGoogle Scholar
Rörsch, A., Van De Putte, P., Nattern, I. E. & Zwenk, H. (1966). Genetic and enzymic control of radiation sensitivity in Escherichia coli. Genetical aspects of radiosensitivity: Mechanism of repair. Int. atom. Energy Ag. Bull.Google Scholar
Stacey, K. A. & Simson, E. (1965). Improved method for the isolation of thymine requiring mutants of Escherichia coli. J. Bact. 90, 554555.CrossRefGoogle ScholarPubMed
Sussman, R. & Jacob, F. (1962). Sur un système de rèpression thermosensible chez le bacteriophage d'Escherichia coli. C.r. hebd. Séanc. Acad. Sci., Paris 254, 11571519.Google Scholar
Van De Putte, P., Zwenk, H. & Rörsch, A. (1966). Properties of four mutants of Escherichia coli defective in genetic recombination. Mutation Res. 3, 381392.CrossRefGoogle ScholarPubMed
Willets, N. S., Clark, A. J. & Low, B. (1969). Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J. Bact. 97, 244249.CrossRefGoogle Scholar
Wing, P. J., Levine, M. & Smith, H. O. (1968). Recombination deficient mutant of Salmonella typhimurium. J. Bact. 95, 18281834.CrossRefGoogle ScholarPubMed