Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-01T15:36:38.176Z Has data issue: false hasContentIssue false

Spontaneous transformation in Bacillus subtilis

Published online by Cambridge University Press:  14 April 2009

Erela Ephrati-Elizur
Affiliation:
Department of Bacteriology, Hebrew University—Hadassah Medical School, Jerusalem

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cultures of Bacillus subtilis release transforming DNA during the early exponential and stationary phases of growth. The pattern of release of transforming DNA was followed by measuring transformation in a system consisting of a non-transformable DNA donor and a differently marked transformable recipient. Transformation in this system seems to be at least as efficient as that induced by purified DNA. Fluorescence microscopy revealed that released DNA remained bound extracellular to intact cells. The release of DNA during early exponential growth seemed to be correlated with the cells' proneness to lysis; both DNA release and cell lysis were inhibited by chloramphenicol. In stationary cells, the release of DNA was neither correlated with a similar proneness to lysis nor inhibited by chloramphenicol.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

References

Berns, K. I. & Thomas, C. A. Jr (1965). Isolation of high molecular weight DNA from Hemophilus influenza. J. molec. Biol. 11, 476490.CrossRefGoogle Scholar
Birnboim, H. C. (1966). Cellular site in Bacillus subtilis of a nuclease which preferentially degrades single stranded nucleic acids. J. Bact. 91, 10041011.Google ScholarPubMed
Burton, K. (1956). A study of the condition and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315323.CrossRefGoogle ScholarPubMed
Campbell, J. H., Evans, J. B., Perry, J. J. & Niven, C. F. Jr (1961). An extracellular material elaborated by Micrococcus sodonenais. J. Bact. 82, 828837.CrossRefGoogle Scholar
Catlin, B. W. (1956). Extracellular deoxyribonucleic acid of bacteria and a deoxyribo-nuclease inhibitor. Science, N.Y. 124, 441442.CrossRefGoogle Scholar
Catlin, B. W. (1960). Transformation of Neisseria meningitidis by deoxyribonucleates from cells and from culture slime. J. Bact. 79, 579589.Google ScholarPubMed
Demain, A. L., Burg, R. W. & Hendlin, D. (1965). Excretion and degradation of ribonucleic acid by Bacillus subtilis. J. Bact. 89, 640646.CrossRefGoogle ScholarPubMed
Ephrati-Elizur, E. (1965). Development of competence for transformation experiments in an overnight culture of germinating spores of Bacillus subtilis. J. Bact. 90, 550.CrossRefGoogle Scholar
Ephrati-Elizur, E., Srinivasan, P. R. & Zamenhof, S. (1961). Genetic analysis by means of transformation of histidine linkage groups in Bacillus subtilis. Proc. natn. Acad. Sci., U.S.A. 47, 5663.CrossRefGoogle ScholarPubMed
Hotchkiss, R. D. (1951). Transfer of penicillin resistance in pneumococci by the desoxyribonucleate derived from resistant cultures. Cold Spring Harb. Symp. quant. Biol. 16, 457461.CrossRefGoogle ScholarPubMed
Iyer, V. N. & Szybalski, W. (1958). The mechanism of chemical mutagenesis. I. Kinetic studies on the action of triethylene melamine (TEM) and azaserine. Proc. natn. Acad. Sci., U.S.A. 44, 446456.CrossRefGoogle ScholarPubMed
Kelly, M. & Pritchard, R. H. (1965). Unstable linkage between genetic markers in transformation. J. Bact. 89, 13141321.CrossRefGoogle Scholar
Kelner, A. (1964). Correlation between genetic transformability and nonphotoreactivability in Bacillus subtilis. J. Bact. 87, 12951303.CrossRefGoogle ScholarPubMed
Kerr, I. M., Pratt, E. A. & Lehman, I. R. (1965). Exonucleolytic degradation of high-molecular-weight DNA and RNA to nucleoside 3′-phosphates by a nuclease from Bacillus subtilis. Biochem. biophys. Res. Commun. 20, 154162.CrossRefGoogle Scholar
Lang, D., Kleinschmidt, A. K. & Zahn, R. K. (1964). Konfiguration und längverteilung von DNA-molekülen in lösung. Biochym. biophys. Acta 88, 142154.Google Scholar
Lowry, O. H., Rosbrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
MacHattie, L. A. & Thomas, C. A. (1964). DNA from bacteriophage lambda: molecular length and conformation. Science, N.Y. 144, 11421144.CrossRefGoogle ScholarPubMed
Mandelstam, J. & Rogers, H. L. (1958). Chloramphenicol-resistant incorporation of amino-acids into Staphylococci and cell-wall synthesis. Nature, Lond. 181, 956957.CrossRefGoogle ScholarPubMed
Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. molec. Biol. 3, 208218.CrossRefGoogle Scholar
Mitchell, P. & Moyle, J. (1957). Autolytic release and osmotic properties of ‘protoplasts’ of S. aureus. J. gen. Microbiol. 16, 184194.CrossRefGoogle Scholar
Mohan, R. R., Kronish, D. P., Pianotti, R. S., Epstein, R. L. & Schwartz, B. S. (1965). Autolytic mechanism for spheroplast formation in Bacillus cereus and Escherichia coli. J. Bact. 90, 13551364.CrossRefGoogle ScholarPubMed
Nomura, M. & Hosoda, J. (1956). Nature of the primary action of the autolysin of Bacillus subtilis. J. Bact. 72, 573581.CrossRefGoogle Scholar
Ottolenghi, E. & Hotchkiss, R. D. (1960). Appearance of genetic transforming activity in pneumococcal cultures. Science, N.Y. 132, 12571258.CrossRefGoogle ScholarPubMed
Ottolenghi, E. & Hotchkiss, R. D. (1962). Release of genetic transforming agent from pneumococcal cultures during the growth and disintegration. J. exp. Med. 116, 491519.CrossRefGoogle ScholarPubMed
Shockman, G. D. (1965). Symposium on the fine structure and replication of bacteria and their parts. IV. Unbalanced cell wall synthesis: autolysis and cell wall thickening. Bact. Rev. 29, 345358.CrossRefGoogle ScholarPubMed
Shockman, G. D., Kolb, J. J. & Toennies, G. (1958). Relations between bacterial cell wall synthesis, growth phase, and autolysis. J. biol. Chem. 230, 961977.CrossRefGoogle ScholarPubMed
Smithies, W. R. & Gibbons, N. E. (1955). The deoxyribose nucleic acid slime layer of some halophilic bacteria. Can. J. Microbiol. 1, 614621.CrossRefGoogle ScholarPubMed
Spizizen, J. (1958). Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. natn. Acad. Sci., U.S.A. 44, 10721078.CrossRefGoogle ScholarPubMed
Takahashi, I. (1962). Genetic transformation of Bacillus subtilis by extracellular DNA. Biochem. biophys. Res. Commun. 7, 467470.CrossRefGoogle ScholarPubMed
Young, F. E. (1966). Autolytic enzyme associated with cell walls of Bacillus subtilis. J. Biol. Chem. 241, 34623467.CrossRefGoogle ScholarPubMed
Young, M. R. & Smith, A. U. (1963). The use of euchrysine in staining cells and tissues for fluorescence microscopy. Jl R. Microsc. Soc. 82, 233244.CrossRefGoogle Scholar