Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T02:21:12.051Z Has data issue: false hasContentIssue false

Spontaneous induction of an homologous Robertsonian translocation, Rb(11.11) in a murine embryonic stem cell line

Published online by Cambridge University Press:  14 April 2009

John Anthony Crolla
Affiliation:
MRC Experimental Embryology and Teratology Unit, St George's Hospital Medical School, Cranmer Terrace, Tooting, London, SW17 0RE, UK
David Brown*
Affiliation:
MRC Experimental Embryology and Teratology Unit, St George's Hospital Medical School, Cranmer Terrace, Tooting, London, SW17 0RE, UK
David G. Whittingham
Affiliation:
MRC Experimental Embryology and Teratology Unit, St George's Hospital Medical School, Cranmer Terrace, Tooting, London, SW17 0RE, UK
*
Author for correspondence.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Karyotype analysis of a series of established mouse embryonic stem cell (MESC) lines showed that the majority were aneuploid by the 7th and 9th passage and that all lines contained a single Robertsonian (Rb) translocation chromosome with a symmetrical, homologous, arm composition Rb(11.11). Although the chromosomal imbalance makes these MESC lines unsuitable for genetic manipulation in vitro and hence for subsequent production of transgenic animals, the spontaneous occurrence and stable retention of the homologous Rb(11.11) as the only metacentric chromosome in an otherwise all acrocentric karyotype, provides potentially useful cell lines for gene assignment and recombinant DNA studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Axelrod, H. R. (1984). Embryonic stem cell lines derived from blastocysts by a simplified technique. Developmental Biology 101, 225228.CrossRefGoogle ScholarPubMed
Cox, D. R., Smith, S. A., Epstein, L. B. & Epstein, C. J. (1984). Mouse trisomy 16 as an animal model of human trisomy 21 (Down Syndrome): Production of viable trisomy 16↔diploid mouse chimeras. Developmental Biology 101, 416424.CrossRefGoogle Scholar
Davisson, M. T. (1989). Centromeric heterochromatin variants. In Genetic Variants and Strains of the Laboratory Mouse, 2nd edn (ed. Lyon, M. F. and Searle, A. G.), pp. 617619. Oxford University Press.Google Scholar
Doetschmann, T. C, Eistetter, M., Katz, M., Schmidt, W. & Kemier, R. J. (1985). The in vitro development of blastocyst-derived embryonic stem cell lines: formation of viceral yolk sac, blood islands and myocardium. Journal of Embryology and Experimental Morphology 87, 2745.Google Scholar
Epstein, C. J., Smith, S. A., Zamora, T., Sawicki, J. A., Magnuson, T. R. & Cox, D. R. (1982). Production of viable adult trisomy 17↔diploid mouse chimeras. Proceedings of the National Academy of Science, USA 79, 43764380.CrossRefGoogle ScholarPubMed
Epstein, C. J., Smith, S. A. & Cox, D. R. (1984). Production and properties of mouse trisomy 15↔diploid chimeras. Developmental Genetics 4, 159165.CrossRefGoogle Scholar
Evans, M. J. & Kaufman, M. H. (1981). Establishment in culture of pluripotent cells from mouse embryos. Nature 292, 154156.CrossRefGoogle Scholar
Gropp, A. & Winking, H. (1981). Robertsonian translocations: cytology, meiosis, segregation patterns and biological consequences of heterozygosity. In Biology of the House Mouse (ed. Berry, R. J.), pp. 141181. London: Academic Press.Google Scholar
Handyside, A. H., O'Neill, G. T., Jones, M. & Hooper, M. L. (1989). Use of BRL-conditioned medium in combination with feeder layers to isolate a diploid embryonal stem cell line. Roux's Archives of Developmental Biology 198, 4855.CrossRefGoogle ScholarPubMed
Iles, S. A. & Evans, E. P. (1977). Karyotype analysis of teratocarcinomas and embryoid bodies of C3H mice. Journal of Embryology and Experimental Morphology 38, 7792.Google ScholarPubMed
Ludecke, H.-J., Senger, G., Claussen, U. & Horsthemke, B. (1989). Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymatic amplification. Nature 338, 348350.CrossRefGoogle ScholarPubMed
Martin, G. R. (1981). Isolation of pluripotent cell lines from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Science, USA 76, 76347638.CrossRefGoogle Scholar
Matthey, R. (1945). L'évolution de la formule chromosomiale chez les vertébrés. Experientia 1, 5078.CrossRefGoogle Scholar
Nesbitt, M.N. & Franke, U. (1973). A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41, 145158.CrossRefGoogle ScholarPubMed
Robertson, E. J., Kaufman, M. H., Bradley, A. & Evans, M. J. (1983). Isolation, properties and karyotype analysis of pluripotential (EK) cell lines from normal and parthenogenetic embryos. In Teratocarcinoma Stem Cells. Cold Spring Harbour Conference on Cell Proliferation, vol. 10 (ed. Silver, L. M., Martin, G. R. and Strickland, S.), pp. 647663.Google Scholar
Seabright, M. (1971). A rapid banding technique for human chromosomes. Lancet ii, 971972.CrossRefGoogle Scholar
Suemori, H. & Nakatsuji, N. (1987). Establishment of the embryo-derived stem (ES) cell lines from mouse blastocysts: effects of the feeder layer. Development Growth and Differentiation 29, 133139.CrossRefGoogle Scholar