Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T18:01:03.206Z Has data issue: false hasContentIssue false

Sex reversal in a wild population of Talpa occidentalis (Insectivora, mammalia)

Published online by Cambridge University Press:  14 April 2009

R. Jiménez
Affiliation:
Departamento de Biologia Animal, Ecología y Genética, Facultad Ciencias, Universidad Granada, 18071 Granada, Spain
M. Burgos
Affiliation:
Departamento de Biologia Animal, Ecología y Genética, Facultad Ciencias, Universidad Granada, 18071 Granada, Spain
L. Caballero
Affiliation:
Departmento de Biologia Celular, Facultad Ciencias. Universidad Granada, 18071 Granada, Spain
R. Díaz De La Guardia
Affiliation:
Departamento de Biologia Animal, Ecología y Genética, Facultad Ciencias, Universidad Granada, 18071 Granada, Spain
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two sex-reversed males and eight intersexes have been found in a natural population of the mole species Talpa occidentalis. All individuals of karyotype 34,XY were normal males, while the 34,XX karyotype was found in normal females, intersexes and sex-reversed males. Small testes were present in XX males, and ovotestes in intersexes. Intersexes showed male antigen levels higher than for females and lower than for males (including XX males), as judged by cytotoxicity tests. The X chromosome of sex-reversed males and intersexes and the Y chromosome of males appeared morphologically normal.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Bennett, D., Mathieson, B. J., Scheid, M., Yanagisawa, K., Boyse, E., Wachtel, S. & Cattanach, B. M. (1977). Serological evidence for H-Y antigen in Sxr, XX sex reversed phenotypic males. Nature 265, 255257.CrossRefGoogle ScholarPubMed
Burgos, M., Jiménez, R & Díaz de la Guardia, R. (1986). A rapid, simple and reliable combined method for G-banding mammalian and human chromosomes. Stain Technology 61(5), 257260.Google Scholar
Cattanach, B. M., Pollard, C. E. & Hawkes, S. G. (1971). Sex-reversed mice. XX and XO males. Cytogenetics 10, 318337.Google Scholar
Cattanach, B. M. & Bigger, T. R. L. (1976). Mouse News Letter 55, 1516.Google Scholar
Cattanach, B. M., Evans, E. P., Burtenshaw, M. D. & Barlow, J. (1982). Male, female and intersex development in mice of identical chromosome constitution. Nature 300, 445446.Google Scholar
Chandley, A. C. & Flecher, J. M. (1980). Meiosis in Sxr male mice. Chromosoma 81, 917.Google Scholar
de la Chapelle, A., Tippett, P. A., Wetterstrand, G. & Page, D. (1984). Genetic evidence of X-Y interchange in a human XX male. Nature 307, 170171.Google Scholar
Evans, E. P., Burtenshaw, M. D. & Brown, B. B. (1980). Meiosis in Sxr male mice. Chromosoma 81, 1926.CrossRefGoogle ScholarPubMed
Evans, E. P., Burtenshaw, M. D. & Cattanach, B. M. (1982). Meiotic crossing-over between the X and the Y chromosomes of male mice carrying the sex reversing (Sxr) factor. Nature 300, 443445.Google Scholar
Ford, C. E. & Evans, E. P. (1969). Meiotic preparations from mammalian testes. In Comparative mammalian cytogenetics (ed. Benirschke, K.). Heidelberg: Springer-Verlag.Google Scholar
Goldberg, E. H., Boyse, E. A., Bennett, D., Scheid, M. & Carswell, E. A. (1971). Serological demonstration of H-Y (male) antigen on mouse sperm. Nature 232, 478480.Google Scholar
Jiménez, R., Burgos, M. & Díaz de la Guardia, R. (1984 a). Meiotic behaviour of sex chromosomes and polymeiosis in three species of insectivores. Genetica 65, 187192.Google Scholar
Jiménez, R., Burgos, M. & Díaz de la Guardia, R. (1984 b). Karyotype and chromosome banding in the mole (Talpa occidentalis) from the south-east of the Iberian Peninsula. Implications on its taxonomic position. Caryologia 37(3), 253258.Google Scholar
Lee, M. R. & Elder, F. F. B. (1980). Yeast stimulation of bone marrow mitosis for cytogenetics investigations. Cytogenetics and Cell Genetics 26, 3640.Google Scholar
Lyon, M. F., Cattanach, B. M. & Charlton, H. M. (1981). Mechanisms of Sex Differentiation in Mammals (ed. Austin, C. R. and Edwards, R. G.), pp. 329386. New York: Academic Press.Google Scholar
Mclaren, A. & Monk, M. (1982). Fertile females produced by inactivation of an X chromosome of “ sex reversed ” mice. Nature 300, 446448.CrossRefGoogle Scholar
Saure, L., Heikura, K., Pelttari, A. & Talman, T. (1972). The functioning testes in the common shrew (Sorex araneus L.) in Northern Finland. Aquilo Ser. Zool. 13, 8186.Google Scholar
Searle, J. B. (1984). A wild common shrew (Sorex araneus) with an XXY chromosome constitution. Journal of Reproduction and Fertility 70, 353356.Google Scholar
Singh, L. & Jones, K. W. (1982). Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome. Cell 28, 205216.Google Scholar
Tres, L. (1978). Translocation on the Y-paracentromeric region to an autosomal bivalent in Sxr XY mouse spermatocytes. Journal of Cell Biology 79, 125.Google Scholar
Winsor, E. J. T., Ferguson-Smith, M. A. & Shire, J. G. M. (1978). Meiotic studies in mice carrying the sex-reversal (Sxr) factor. Cytogenetics and Cell Genetics 21, 1118.CrossRefGoogle ScholarPubMed