Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T12:06:49.515Z Has data issue: false hasContentIssue false

Selection of lon mutants in Escherichia coli by treatment with phenothiazines

Published online by Cambridge University Press:  14 April 2009

J. Molnár
Affiliation:
Institute of Microbiology, University Medical School, Szeged, Hungary
I. B. Holland
Affiliation:
Institute of Microbiology, University Medical School, Szeged, Hungary
Yvette Mándi
Affiliation:
Institute of Microbiology, University Medical School, Szeged, Hungary
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Growth of E. coli K12 in the presence of chlorpromazine or promethazine resulted in the appearance of a special kind of mutational change with a frequency of 5–10%. These cells were UV-sensitive and very mucoid in their colony formation. The strains were characterized as colanic acid producing on the basis of phage m-59 sensitivity and we tentatively conclude that these mutants are Lon.

In another series of experiments drug treatment of E. coli failed to yield significant numbers of auxotrophs and the back mutation rate of a number of S. typhimurium His strains was not significantly increased.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

REFERENCES

Adler, H. I. & Hardigree, A. A. (1964). Analysis of a gene controlling cell division and sensitivity to radiation in Escherichia coli. Journal of Bacteriology 87. 720726.CrossRefGoogle ScholarPubMed
Alföldi, L., Raskó, I. & Kerekes, E. (1968). L-serine deaminase of Escherichia coli. Journal of Bacteriology 96. 15121518.CrossRefGoogle ScholarPubMed
Ames, B. N., Lee, F. D. & Durston, W. E. (1973). An improved bacterial test system for the detection and classification of mutagens and carcinogenesis. Proceedings of the National Academy of Science of the U.S.A. 70. 782786.CrossRefGoogle Scholar
Bourden, J. L. (1961). Contribution á l'étude des propriétés antibiotiques de la chlorpromazine ou 4560 RP. Annales de I'Institut Pasteur 101. 876886.Google Scholar
Buxton, R. S. & Holland, I. B. (1974). Genetic studies of tolerance to colicin E2 in E. coli K12. II. Multiple mutations as a cause of the various phenotypic properties of Cet mutants. Molecular and General Genetics 131. 159171.CrossRefGoogle Scholar
Csiszár, K. & Ivánovics, G. (1965). Transduction in Bacillus subtilis. Acta Microbiologica Academy of Science, Hungary 12. 7376.Google ScholarPubMed
Hamelin, C. & Chung, S. (1975 a) Characterization of mucoid mutants of Escherichia coli K12 isolated after exposure to ozone. Journal of Bacteriology 122. 1924.CrossRefGoogle ScholarPubMed
Hamelin, C. & Chung, S. (1975 b). The effect of low concentrations of ozone on E. coli C. Mutation Research 28. 131132.CrossRefGoogle Scholar
Hua, S. S. & Markovitz, A. (1972). Multiple regulator gene control of the galactose operon in Escherichia coli K12. Journal of Bacteriology 110. 10891099.CrossRefGoogle Scholar
Hughes, A. R. & Wilkie, D. (1970). Preferential inhibition of respiration in Saccharomyces cerevisiae by chlorimipramine. Correlation with chlorpromazine. Biochemical Pharmacology 19. 25552560.CrossRefGoogle ScholarPubMed
Klubes, P. K., Fay, P. J. & Cerna, I. (1971). Biochemical Pharmacology 20. 265277.CrossRefGoogle Scholar
Mándi, Y., Molnér, J., Holland, I. B. & Béládi, I. (1975). Efficient curing of an Escherichia coli F-prime plasmid by phenothiazines. Genetical Research 26. 109111.CrossRefGoogle ScholarPubMed
Molnár, J., Király, J. & Mándi, Y. (1975). The antibacterial action and R-factor inhibiting activity of chlorpromazine. Experientia 31. 444446.CrossRefGoogle ScholarPubMed
Molnár, J., Méndi, Y. & Király, J. (1976). Antibacterial effect of some phenothiazine compounds and R-factor elimination by chloropromazine. Acta Microbiologica Academy of Science, Hungary 23. 4554.Google Scholar
Nathan, H. A. (1961). Alteration of permeability of Lactobacillus plantarum caused by chlorpromazine. Nature, 192. 471472.CrossRefGoogle ScholarPubMed
Orlowsky, M. & Goldman, M. (1974). Action of chlorpromazine on spore-forming Bacillus species. Canadian Journal of Microbiology 20. 16891693.CrossRefGoogle Scholar
Roth, J. R. (1974). Frameshift mutations. Annual Review Genetics 8. 319346.CrossRefGoogle ScholarPubMed
Seeman, P. (1972). The membrane action of Anaesthetics and Tranquilisers. Pharmacolgical Reviews 24. 583655.Google Scholar
Stibm, S., Bessler, W., Fehmel, F., Fretjnd-Molbert, E. & Thurow, H. (1974). Uber eine bakteriophagen-induzierte colansaure-depolymerase. Zentralblatt Bakteriolgischen. Hygiene I. Abt. Orig. A 266. 2628.Google Scholar
Tosk, J. (1974). Chlorpromazine protection against acridine induced reversion of a histidine requiring mutant of S. typhimurium. Mutation Research 24. 13.CrossRefGoogle Scholar
Webb, R. B. & Kubitschek, H. E. (1963). Mutagenic and antimutangenic effects of acridine orange in Escherichia coli. Biochemicstry Biophysics Research Communication 13. 9093.CrossRefGoogle Scholar
Yamabe, S. (1973). Further fluorospectrophotometric studies on the binding of acridine orange with DNA. Effects of thermal denaturation of DNA and additions of spermine, kanamycin dihydrostreptomycin, methylene blue and chlorpromazine. Archives of Biochemistry and Biophysics 154. 1927.CrossRefGoogle ScholarPubMed
Zampzeri, A. & Greenberg, J. (1965). Mutagenesis by acridine orange and proflavin in E. coli. Mutation Research 2. 552556.CrossRefGoogle Scholar