Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T04:25:11.072Z Has data issue: false hasContentIssue false

The search for the mouse X-chromosome inactivation centre

Published online by Cambridge University Press:  14 April 2009

S. Rastan*
Affiliation:
Section of Comparative Biology, Clinical Research Centre, Harrow, Middlesex HA1 3UJ, UK
S. D. M. Brown
Affiliation:
Department of Biochemistry and Molecular Genetics, St Mary's Hospital Medical School, London W2 1PG, UK
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The phenomenon of X-chromosome inactivation in female mammals, whereby one of the two X chromosome present in each cell of the female embryo is inactivated early in development, was first described by Mary Lyon in 1961. Nearly 30 years later, the mechanism of X-chromosome inactivation remains unknown. Strong evidence has accumulated over the years, however, for the involvement of a major switch or inactivation centre on the mouse X chromosome. Identification of the inactivation centre at the molecular level would be an important step in understanding the mechanism of X-inactivation. In this paper we review the evidence for the existence and location of the X-inactivation centre on the mouse X-chromosome, present data on the molecular genetic mapping of this region, and describe ongoing strategies we are using to attempt to identify the inactivation centre at the molecular level.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Allerdice, P. W., Miller, O. J., Miller, D. A. & Klinger, H. P. (1978). Spreading of inactivation in an (X;14) translocation. American Journal of Medical Genetics 2, 233240.Google Scholar
Avner, P. R., Arnaud, D., Amar, L., Cambrou, J., Winking, H. & Russell, L. B. (1987). Characterization of a panel of somatic cell hybrids for regional mapping of the mouse X chromosome. Proceedings of the National Academy of Sciences, U.S.A. 84, 53305334.CrossRefGoogle ScholarPubMed
Brockdorff, N., Fisher, E. M. C., Cavanna, J. S., Lyon, M. F. & Brown, S. D. M. (1987 a). Construction of a detailed molecular map of the mouse X chromosome by microcloning and interspecific crosses. EMBO Journal 6, 32913297.Google Scholar
Brockdorff, N., Cross, G. S., Cavanna, J. S., Fisher, E. M. C., Lyon, M. F., Davies, K. E. & Brown, S. D. M. (1987 b). The mapping of a cDNA from the human X-linked Duchenne muscular dystrophy gene to the mouse X chromosome. Nature 328, 166168.CrossRefGoogle Scholar
Brockdorff, N., Amar, L. L. & Brown, S. D. M. (1989). Pulse-field linkage of the P3, G6pd and Cf8 genes on the mouse X chromosome: demonstration of synteny at the physical level. Nucleic Acid Research 17, 13151326.CrossRefGoogle ScholarPubMed
Brockdorff, N., Montague, M., Smith, S. & Rastan, S. (1990). Construction and analysis of CpG-rich island libraries from the mouse X-chromosome. Genomics (in press).CrossRefGoogle Scholar
Brown, C. J., Sekiguchi, T., Nishimoto, T. & Willard, H. F. (1989). Regional localization of CCG 1 gene which complements hamster cell cycle mutation BN462 to Xq11-Xq13. Somatic Cell and Molecular Genetics 15, 9396.CrossRefGoogle Scholar
Brown, C. J. & Willard, H. F. (1989). Localization of the X inactivation centre (XIC) to Xq13. Cytogenetics and Cell Genetics, 51, Abstract A2633: HGM10.Google Scholar
Brown, S. D. M. (1989). The Mouse Genome at Oxford. What can mouse gene mapping do for mammalian genetics? Bioessays 11, 191193.CrossRefGoogle ScholarPubMed
Bücher, Th., Linke, I. M., Dünnwald, M., West, J. D. & Cattanach, B. M. (1985). Xce genotype has no impact on the effect of imprinting on X-chromosome expression in mouse yolk-sac endoderm. Genetical Research 47, 4348.CrossRefGoogle Scholar
Burke, D. T., Carle, G. F. & Olson, M. V. (1987). Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806812.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Isaacson, J. H. (1965). Genetic control over the inactivation of autosomal genes attached to the X-chromosome. Zeitscherift für Vererbungslehre 96, 313323.Google ScholarPubMed
Cattanach, B. M. (1966). The location of Cattanach's translocation into the X-chromosome linkage map of the mouse. Genetical Research 8, 253256.CrossRefGoogle ScholarPubMed
Cattanach, B. M. (1974). Position effect variegation in the mouse. Genetical Research 23, 291306.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Isaacson, J. H. (1967). Controlling elements in the mouse X chromosome. Genetics 57, 331346.CrossRefGoogle ScholarPubMed
Cattanach, B. M., Pollard, C. E. & Perez, J. N. (1969). Controlling elements in the mouse X-chromosome. I. Interaction with X-linked genes. Genetical Research 14, 223235.Google Scholar
Cattanach, B. M. & Papworth, D. (1981). Controlling elements in the mouse. V. Linkage tests with X-linked genes. Genetical Research 38, 5770.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Johnston, P. (1981). Evidence of non-random X-inactivation in the mouse. Hereditas 94, 5.Google Scholar
Cattanach, B. M. (1983). Location of Xce using Xcea/Xcec heterozygates. Mouse News Letter 69, 24.Google Scholar
Cattanach, B. M., Rasberry, C. & Andrews, S. J. (1989 a). Further Xce linkage data. Mouse News Letter 83, 165.Google Scholar
Cattanach, B. M. (1989 b). Ta 25H, a presumptive X chromosome deletion. Mouse News Letter 83, 160.Google Scholar
Cavanna, J. S., Coulton, G., Morgan, J. E., Brockdorff, N., Forrest, S. M., Davies, K. E. & Brown, S. D. M. (1988). Molecular and genetic mapping of the mouse mdx locus. Genomics 3, 337341.Google Scholar
De Mars, R., LeVan, S. L., Trend, B. L. & Russell, L. B.Abnormal ornithine carbamoyl transferase in mice having the sparse-fur mutation. Proceedings of the National Academy of Sciences, U.S.A. 73, 16931697.Google Scholar
Disteche, C. M., Eicher, E. M. & Latt, S. A. (1979). Late replication in an X-autosome translocation in the Mouse. Correlation with genetic inactivation and evidence for selective effects during embryogenesis. Proceedings of the National Academy of Sciences, U.S.A. 76, 52345238.CrossRefGoogle Scholar
Drews, U., Blecher, S. R., Owen, D. A. & Ohno, S. (1974). Genetically directed preferential X-activation seen in mice. Cell 1, 38.CrossRefGoogle Scholar
Eicher, E. M. (1970). X-autosome translocations in the mouse: total inactivation versus partial inactivation of the X chromosome. Advances in Genetics 16, 175259.Google Scholar
Evans, M. J. & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154156.CrossRefGoogle ScholarPubMed
Falconer, D. S. & Isaacson, J. H. (1972). Sex-linked variegation and modification by selection in brindled mice. Genetical Research 20, 291316.CrossRefGoogle Scholar
Grahn, D., Lea, R. A. & Hulesch, J. (1970). Location of an X-inactivation controller gene on the normal X chromosome of the mouse. Genetics 64, S25.Google Scholar
Johnston, P. G. & Cattanach, B. M. (1981). Controlling elements in the mouse. IV. Evidence of non-random X-inactivation. Genetical Research 37, 151160.CrossRefGoogle ScholarPubMed
Keer, J. T., Hamvas, R. M. J., Brockdorff, N., Page, D., Rastan, S. & Brown, S. D. M. (1990). The long range genetic mapping of the mouse X-inactivation centre region. Genomics (in press).CrossRefGoogle Scholar
Lubahn, D. B., Joseph, D. R., Sullivan, P. M., Willard, H. F., French, F. S. & Wilson, E. M. (1988). Cloning of the human and androgen receptor complementary DNA and localization to the X chromosome. Science 240, 327330.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X chromosome of the mouse (Mus musculus L). Nature 190, 373.CrossRefGoogle ScholarPubMed
Lyon, M. F., Zenthon, J., Evans, E. P., Burtenshaw, M. D., Wareham, K. A. & Williams, E. D. (1986). Lack of inactivation of a mouse X-linked gene physically separated from the inactivation centre. Journal of Embryology and Experimental Morphology 97, 7585.Google ScholarPubMed
Mattei, M. G., Mattei, J. F., Vidal, I. & Giraud, F. (1981). Structural anomalies of the X chromosome and inactivation centre. Human Genetics 56, 401408.Google Scholar
Melton, D. W., McEwan, C., McKie, A. B. & Reid, A. M. (1986). Expression of the mouse HPRT gene: deletional analysis of the promoter region of an X-chromosome linked housekeeping gene. Cell 44, 319328.CrossRefGoogle ScholarPubMed
Monk, M. & Harper, M. I. (1979). Sequential X-chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281, 311313.CrossRefGoogle ScholarPubMed
Mullins, L. J., Grant, S. G., Stephenson, D. A. & Chapman, V. M. (1987). Multilocus molecular map of the mouse X-chromosome. Genomics 3, 187194.Google Scholar
Ohno, S., Geller, L. N. & Kan, J. (1974). The analysis of Lyon's hypothesis through preferential X-inactivation. Cell 1, 175184.CrossRefGoogle Scholar
Paterno, G. D., Adra, C. N. & McBurney, M. W. (1985). X chromosome reactivation in mouse embryonal carcinoma cells. Molecular and Cellular Biology 5, 27052712.Google ScholarPubMed
Rastan, S. (1982). Primary non-random X-inactivation caused by controlling elements in the mouse demonstrated at the cellular level. Genetical Research 40, 139147.CrossRefGoogle ScholarPubMed
Rastan, S. (1983). Non-random X-chromosome inactivation in mouse X-autosome translocations - location of the inactivation centre. Journal of Embryology and Experimental Morphology 78, 122.Google ScholarPubMed
Rastan, S. & Cattanach, B. M. (1983). Interaction between the Xce locus and imprinting of the paternal X chromosome in mouse yolk-sac endoderm. Nature 303, 635637.CrossRefGoogle ScholarPubMed
Rastan, S. & Robertson, E. J. (1985). X-chromosome deletions in embryo-derived (EK) cell lines associated with lack of X-chromosome inactivation. Journal of Embryology and Experimental Morphology 90, 379388.Google ScholarPubMed
Robertson, E. J., Kaufman, M. H., Bradley, A. & Evans, M. J. (1983 a). Isolation, properties and karyotype analysis of pluripotential (EK) cell lines from normal and parthenogenetic embryos. In Teratocarcinoma Stem Cells (ed. Silver, L. M., Martin, G. R. and Strickland, S.), Cold Spring Harbor Conferences on Cell Proliferation Vol. 10. CSH Press.Google Scholar
Robertson, E. J., Evans, M. J. & Kaufman, M. H. (1983 b). X-chromosome instability in pluripotential stem cell lines derived from parthenogenetic embryos. Journal of Embryology and Experimental Morphology 74, 297309.Google ScholarPubMed
Russell, L. B. (1963). Mammalian X-chromosome action: inactivation limited in spread and in region of origin. Science 140, 976978.CrossRefGoogle ScholarPubMed
Russell, L. B. (1971). Attempts to demonstrate different inactivating states for normal mouse X chromosome. Genetics 68, S5556.Google Scholar
Russell, L. B. & Cacheiro, N. L. A. (1978). The use of mouse X-autosome translocations in the study of X inactivation pathways and non-randomness. In Genetic Mosaics and Chimeras in Mammals (ed. Russell, L. B.). New York and London: Plenum Press.CrossRefGoogle Scholar
Russell, L. B. (1983). In Genetics of the Mammalian X-chromosome Part A. Basic Mechanisms of X-chromosome Behaviour (ed. Sandberg, A. A.), p. 205. New York: Liss.Google Scholar
Tabor, A., Anderson, O., Niebuhr, E. & Sardemann, H. (1983). Interstitial deletion in the ‘critical region’ of the long arm of the X chromosome in a mentally retarded boy and his normal mother. Human Genetics 64, 196199.CrossRefGoogle Scholar
Takagi, N. & Martin, G. R. (1984). Studies of the temporal relationship between the cytogenetic and biochemical manifestations of X-chromosome inactivation during the differentiation of LT-1 teratocarcinoma stem cells. Developmental Biology 103, 425433.Google Scholar
Thomas, K. R. & Cappechi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503512.CrossRefGoogle ScholarPubMed
Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. (1989). Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313321.Google Scholar