Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T11:40:51.179Z Has data issue: false hasContentIssue false

The satellite DNAs of Drosophila simulans

Published online by Cambridge University Press:  14 April 2009

A. R. Lohe
Affiliation:
Molecular Biology Institute and Department of Biology, University of California, Los Angeles, California 90024
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The resolution of antibiotic-CsCl gradients enabled an examination of the satellite DNAs in the nuclear DNA of Drosophila simulans. Of the eight distinct satellite DNAs which were detected, four band at almost the same buoyant density in CsCl but can be resolved in netropsin sulphate-CsCl gradients. Each consists of a repeated sequence which, in five of the satellites, is shown to be arranged in tandem for long regions of the chromosomal DNA. One satellite (1·697 g/ml in CsCl) contains repeated sequences interspersed with other sequences. The satellite DNAs were compared with the satellite DNAs known to be present in the sibling species, D. melanogaster. The two species have different overall complements of satellite DNAs, but one satellite (1·672 g/ml) may be identical.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

Barnes, S. R., Webb, D. A. & Dover, G. (1978). The distribution of satellite and main-band DNA components in the melanogaster species subgroup of Drosophila. I. Fractionation of DNA in actinomycin D and distamycin A density gradients. Chromosoma 67, 341363.CrossRefGoogle ScholarPubMed
Bond, H. E., Flamm, W. G., Burr, H. E. & Bond, S. B. (1967). Mouse satellite DNA. Further studies on its biological and physical characteristics and its intracellular localization. Journal of Molecular Biology 27, 289302.CrossRefGoogle ScholarPubMed
Brutlag, D., Appels, R., Dennis, E. S. & Peacock, W. J. (1977). Highly repeated DNA in Drosophila melanogaster. Journal of Molecular Biology 112, 3147.CrossRefGoogle ScholarPubMed
Dennis, E. S. & Peacock, W. J. (1975). Mitochondrial DNA from the sibling species Drosophila melanogaster and Drosophila simulane. Proceedings of the Australian Biochemical Society 8, 85.Google Scholar
Endow, S. A., Polan, M. L. & Gall, J. G. (1975). Satellite DNA sequences of Drosophila melanogaster. Journal of Molecular Biology 96, 665692.CrossRefGoogle ScholarPubMed
Flamm, W. G. (1972). Highly repetitive sequences of DNA in chromosomes. International Review of Cytology 32, 151.CrossRefGoogle ScholarPubMed
Gall, J. G. & Atherton, D. D. (1974). Satellite DNA sequences in Drosophila virilis. Journal of Molecular Biology 85, 633664.CrossRefGoogle ScholarPubMed
Gellert, M., Smith, C. E., Neville, D. & Felsenfeld, G. (1965). Actinomycin binding to DNA: Mechanism and specificity. Journal of Molecular Biology 11, 445457.CrossRefGoogle ScholarPubMed
Goldring, E. S., Brutlag, D. L. & Peacock, W. J. (1974). Arrangement of the highly repeated DNA of Drosophila melanogaster. In The Eukaryote Chromosome (eds. Peacock, W. J. and Brock, R. D.), pp. 4760. Canberra: Australian National University Press.Google Scholar
Hamaguchi, K. & Geiduschek, E. P. (1962). The effect of electrolytes on the stability of the deoxyribonucleate helix. Journal of American Chemical Society 84, 13291338.CrossRefGoogle Scholar
Hennig, W., Hennig, I. & Stein, H. (1970). Repeated sequences in the DNA of Drosophila and their localization in giant chromosomes. Chromosoma 32, 3163.CrossRefGoogle ScholarPubMed
Hennig, W. & Walker, P. M. B. (1970). Variations in the DNA from two rodent families (Cricetidae and Muridae). Nature 225, 915919.CrossRefGoogle ScholarPubMed
Ifft, J. B., Voet, D. & Vinograd, J. (1961). The determination of density distributions and density gradients in binary solutions at equilibrium in the ultracentrifuge. Journal of Physical Chemistry 65, 11381145.CrossRefGoogle Scholar
Lemeunier, F. & Ashburner, M. (1976). Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences. Proceedings Royal Society London B 193, 275294.Google ScholarPubMed
Lohe, A. R. (1977). Highly repeated DNA in Drosophila simulons: chromosomal organization and evolutionary stability. Ph.D. Thesis, Australian National University, Canberra.Google Scholar
Lohe, A. R. (1981). The properties and chromosomal locations of five satellite DNAs in Drosophila simulane. Genetical Research (submitted).CrossRefGoogle Scholar
Mazrimas, J. A. & Hatch, F. T. (1972). A possible relationship between satellite DNA and the evolution of kangaroo rat species (Genus Dipodomys). Nature New Biology 240, 102105.CrossRefGoogle ScholarPubMed
Peacock, W. J., Brutlag, D., Goldring, E., Appels, R., Hinton, C. W. & Lindsley, D. L. (1973). The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spring Harbor Symposium on Quantitative Biology 38, 405416.CrossRefGoogle Scholar
Peacock, W. J., Appels, R., Dunsmuir, P., Lohe, A. R. & Gerlach, W. L. (1977 a). Highly repeated DNA sequences: Chromosomal localization and evolutionary conservatism. In International Cell Biology (eds. Brinkley, B. K. and Porter, K. R.), pp. 494506. New York: Rockefeller University Press.Google Scholar
Peacock, W. J., Lohe, A. R., Gerlach, W. L., Dunsmuir, P., Dennis, E. S. & Appels, R. (1977 b). Fine structure and evolution of DNA in heterochromatin. Cold Spring Harbor Symposium on Quantitative Biology 42, 11211135.CrossRefGoogle Scholar
Rae, P. M. M. (1972). The distribution of repetitive DNA sequences in chromosomes. Advances in Cell and Molecular Biology 2, 109149.Google Scholar
Salser, W., Bowen, S., Browne, J., Adli, F. El, Federoff, N., Fry, K., Heindell, H., Paddock, G., Poon, R., Wallace, B. & Whitcome, P. (1976). Investigation of the organization of mammalian chromosomes at the DNA sequence level. Federation Proceedings 35, 2335.Google ScholarPubMed
Sobell, H. M. & Jain, S. C. (1972). Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. Journal of Molecular Biology 68, 2134.CrossRefGoogle ScholarPubMed
Southern, E. M. (1970). Base sequence and evolution of guinea pig α-satellite DNA. Nature 227, 794798.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Long range periodicities in mouse satellite DNA. Journal of Molecular Biology 94, 5169.CrossRefGoogle ScholarPubMed
Sutton, W. D. & McCallum, M. (1972). Related satellite DNAs in the genus Mus. Journal of Molecular Biology 71, 633656.CrossRefGoogle ScholarPubMed
Szybalski, W. & Szybalski, E. H. (1971). Equilibrium density gradient centrifugation. In Procedures in Nucleic Acid Research, vol. 2 (ed. Cantoni, G. L. and Davies, D. R.), pp. 311354. New York: Harper & Row.Google Scholar
Walker, P. M. B. (1968). How different are the DNAs from related animals? Nature 219, 228232.CrossRefGoogle ScholarPubMed
Walker, P. M. B. (1971). ‘Repetitive’ DNA in higher organisms. Progress in Biophysics and Molecular Biology 23, 145190.CrossRefGoogle ScholarPubMed
Waring, M. & Britten, R. J. (1966). Nucleotide sequence repetition: A rapidly reassociating fraction of mouse DNA. Science 154, 791794.CrossRefGoogle ScholarPubMed
Zimmer, C. (1975). Effects of the antibiotics netropsin and distamycin A on the structure and function of nucleic acids. In Nucleic Acid Research and Molecular Biology, vol. 15 (ed. Cohn, W. E.), pp. 285318. New York: Academic Press.Google Scholar