Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T23:06:00.335Z Has data issue: false hasContentIssue false

Role of simple and complex aggregates in Escherichia coli Hfr × F matings

Published online by Cambridge University Press:  14 April 2009

Paul Broda
Affiliation:
Department of Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
J. F. Collins
Affiliation:
Department of Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analysis of tetraparental Hfr × F matings of Escherichia coli strains showed that mating complexes were predominantly pairs or small aggregates of cells. Many physically associated complexes of donor and recipient cells gave rise to no recombinant cells. The observed linkage of genetic markers in recombinants is sensitive to multiple mating events, and should therefore be measured under well-defined conditions giving pairwise matings only.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Achtman, M. (1975). Mating aggregates in Escherichia coli conjugation. Journal of Bacteriology 123, 505515.CrossRefGoogle ScholarPubMed
Anderson, T. F. (1958). Recombination and segregation in E. coli. Cold Spring Harbor Symposia on Quantitative Biology 23, 4758.CrossRefGoogle Scholar
Berg, C. M. & Curtiss, R. (1967). Transposition derivatives of an Hfr strain of Escherichia coli K12. Genetics 56, 503525.CrossRefGoogle Scholar
Bresler, S. E., Lanzov, V. A. & Manukian, L. R. (1973). Mechanism of genetic recombination during bacterial conjugation of Escherichia coli K.12. IV. Heterogeneity of progeny of exconjugants. Role of donor and recipient strains. Molecular and general Genetics 123, 347353.CrossRefGoogle ScholarPubMed
Broda, P. (1967). The formation of Hfr strains in Escherichia coli K12. Genetical Research 9, 3547.CrossRefGoogle Scholar
Broda, P. (1974). Modified map positions for lac and the pro markers in Escherichia coli K12. Journal of Bacteriology 117, 741746.CrossRefGoogle Scholar
Broda, P. & Collins, J. F. (1974). Gross map distances and Hfr transfer times in Escherichia coli K12. Journal of Bacteriology 117, 747752.CrossRefGoogle Scholar
Collins, J. F. & Broda, P. (1975). Motility, diffusion and cell concentration affect pair formation in Escherichia coli. Nature 258, 722723.CrossRefGoogle ScholarPubMed
Fischer-Fantuzzi, L. & di Girolamo, M. (1965). Triparental matings in E. coli Genetics 46, 13051315.CrossRefGoogle Scholar
Hayes, W. (1957). The kinetics of the mating process in E. coli. Journal of General Microbiology 16, 97119.CrossRefGoogle Scholar
Lederberg, J. (1957). Sibling recombinants in zygote pedigrees of E. coli. Proceedings of the National Academy of Sciences, U.S.A. 43, 10601065.CrossRefGoogle Scholar
Lotan, D., Yagil, E. & Bracha, M. (1972). Bacterial conjugation: an analysis of mixed recombinant clones. Genetics 72, 381391.CrossRefGoogle ScholarPubMed
Nelson, T. C. (1956). Sexual competence in Escherichia coli. Journal of Cellular and Comparative Physiology 48, 271291.CrossRefGoogle ScholarPubMed
Walmsley, R. H. (1973). Physical assay for competence for specific mating pair formation in E. coli. Journal of Bacteriology 114, 144151.CrossRefGoogle Scholar
Wood, T. H. (1967). Genetic recombination in Escherichia coli: clone heterogeneity and the kinetics of segregation. Science 157, 319321.CrossRefGoogle ScholarPubMed