Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T12:04:37.724Z Has data issue: false hasContentIssue false

The role of growth hormone in lines of mice divergently selected on body weight

Published online by Cambridge University Press:  14 April 2009

Ian M. Hastings*
Affiliation:
Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland
Lorna H. Bootland
Affiliation:
Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland
William G. Hill
Affiliation:
Institute of Cell, Animal and Population Biology, University of Edinburgh, Edinburgh EH9 3JT, Scotland
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An understanding of the physiological and genetic changes which determine the response to selection is critical for both evolutionary theory and to assess the application of new molecular techniques to commercial animal breeding. We investigated an aspect of physiology, growth hormone (GH) metabolism, which might a priori have been expected to play a large part in the response of mouse lines selected for high or low body weight. Disruption of endogenous GH or addition of exogenous GH had similar proportionate effects on body weight in both lines of mice (although differences in body composition arose) suggesting that neither the production of GH nor receptor sensitivity to GH had been altered as a result of selection. This supports a ‘pleiotropic model’ of the response to selection: that many genes with diverse metabolic roles all contribute to the divergent phenotype. This result has significant commercial implications as it suggests that artificial selection, transgenic technology and environmental manipulation may be synergistic rather than antagonistic strategies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

References

Asante, E. A., Hill, W. G. & Bulfield, G. (1989). Analysis of lines of mice selected for fat content. 1. Correlated responses in the activities of NADPH-generating enzymes. Genetical Research 54, 155160.CrossRefGoogle ScholarPubMed
Behringer, R. R., Lewin, T. M., Quaife, C. J., Palmiter, R. D., Brinster, R. L. & Dercole, A. J. (1990). Expression of insulin-like growth factor-I stimulates normal somatic growth in growth hormone-deficient transgenic mice. Endocrinology 127, 10331040.CrossRefGoogle ScholarPubMed
Behringer, R. R., Mathews, L. S., Palmiter, R. D. & Brinster, R. L. (1988). Dwarf mice produced by genetic ablation of growth hormone-expressing cells. Genes & Development 2, 453461.CrossRefGoogle ScholarPubMed
Beniwal, B. K., Hastings, I. M., Thompson, R. & Hill, W. G. (1992 a). Estimation of changes in genetic parameters in selected lines of mice using REML with an animal model. I. Lean mass. Heredity 69, 352360.CrossRefGoogle ScholarPubMed
Beniwal, B. K., Hastings, I. M., Thompson, R. & Hill, W. G. (1992 b). Estimation of changes in genetic parameters in selected lines of mice using REML with an animal model. II. Body weight, body composition and litter size. Heredity 69, 361371.CrossRefGoogle ScholarPubMed
Blair, H. T., McCutcheon, S. N., Mackenzie, D. D. S., Gluckman, P. D., Ormsby, J. E. & Brier, B. H. (1989). Responses to divergent selection for plasma concentrations of insulin-like growth factor-1 in mice. Genetical Research 53, 187191.CrossRefGoogle ScholarPubMed
Blair, H. T., McCutcheon, S. N. & Mackenzie, D. D. S. (1990). Components of the somatotropic axis as predictors of genetic merit for growth. Proceedings of the 4th World Congress Applied to Livestock Production XVI, 246255.Google Scholar
Bootland, L. H., Hill, W. G. & Hastings, I. M. (1991 a). Production of high and low body weight lit/lit dwarves. Mouse Genome 89, 564.Google Scholar
Bootland, L. H., Hill, W. G. & Sinnett-Smith, P. A. (1991 b). Effects of exogenous growth hormone on growth and composition in genetically selected mice. Journal of Endocrinology 131, 1924.CrossRefGoogle ScholarPubMed
Bradley, A., Hasty, P., Davis, A. & Ramirez-Solis, R. (1992). Modifying the mouse: design and desire. Biotechnology 10, 534538.Google ScholarPubMed
Bulfield, G. (1972). Genetic control of metabolism: enzyme studies of the obese and adipose mutants in the mouse. Genetical Research 20, 5164.CrossRefGoogle ScholarPubMed
Cheng, T. C., Beamer, W. G., Phillips, J. A., Bartke, A., Mallonee, R. L. & Dowling, C. (1983). Etiology of growth-hormone deficiency in little, ames, and snell dwarf mice. Endocrinology 113, 16691678.CrossRefGoogle ScholarPubMed
Clark, R. G. & Robinson, I. C. (1985). Effects of a fragment of human growth hormone-releasing factor in normal and little mice. Journal of Endocrinology 106, 15.CrossRefGoogle ScholarPubMed
Eicher, E. M. & Beamer, W. G. (1976). Inherited ateliotic dwarfism in mice. Journal of Heredity 67, 8791.CrossRefGoogle ScholarPubMed
Fielder, P. J. & Talamantes, F. (1992). The insulin-like effects of mouse growth-hormone on adipose-tissue from virgin and pregnant mice. Metabolism -Clinical and Experimental 41, 415419.CrossRefGoogle ScholarPubMed
Genstat 5 Committee (1988). Genstat 5 Reference Manual. Oxford, UK: Oxford University Press.Google Scholar
Hastings, I. M. & Hill, W. G. (1989). A note on the effects of different selection criteria on carcass composition in mice. Animal Production 48, 229233.CrossRefGoogle Scholar
Hastings, I. M. & Hill, W. G. (1990). Analysis of lines of mice selected for fat content. 2. Correlated responses in the activities of enzymes involved in lipogenesis. Genetical Research 55, 5561.CrossRefGoogle ScholarPubMed
Hastings, I. M., Yang, J. & Hill, W. G. (1991). Analysis of lines of mice selected on fat content. 4. Correlated responses in growth and reproduction. Genetical Research 58, 235259.CrossRefGoogle ScholarPubMed
Jansson, J. O., Downs, T. R., Beamer, W. G. & Frohman, L. A. (1986). Receptor-associated resistance to growth hormone-releasing factor in dwarf little mice. Science 232, 511512.CrossRefGoogle ScholarPubMed
Joyner, A. L. (1991). Gene targetting and gene trap screens using embryonic stem cells - new approaches to mammalian development. Bioessays 13, 649656.CrossRefGoogle ScholarPubMed
Kelly, P. A., Djiane, J., Postel-Vinay, M. C. & Edery, M. (1991). The prolactin/growth hormone receptor family. Endocrine Reviews 12, 235251.CrossRefGoogle ScholarPubMed
McKnight, B. J. & Goddard, C. (1989). The effect of food restriction on circulating insulin-like growth factor-I in mice divergently selected for high or low protein of fat to body mass ratios. Comparative Biochemistry and Physiology 92, 656–569.Google ScholarPubMed
Medrano, J. F., Pomp, D., Sharrow, L., Bradford, G. E., Downs, T. R. & Frohman, L. A. (1991). Growth hormone and insulin-like growth factor-1 measurement in high growth (hg) mice. Genetical Research 58, 6774.CrossRefGoogle ScholarPubMed
Nagai, J., Davis, G. & Lin, C. Y. (1990). Growth of mice produced by males with or without the rat growthhormone transgene. Canadian Journal of Animal Science 70, 979982.CrossRefGoogle Scholar
O'Sulliven, D., Millard, W. J., Badger, T. M., Martin, J. B. & Martin, R. J. (1986). Growth hormone secretion in genetic large (LL) and small (SS) rats. Endocrinology 119, 19481953.CrossRefGoogle Scholar
Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C. & Evans, R. M. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611615.CrossRefGoogle ScholarPubMed
Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E. & Brinster, R. L. (1983). Metallothionein-human GH fusion genes stimulate growth in mice. Science 222, 809.CrossRefGoogle Scholar
Patterson, H. D. & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika 58, 545554.CrossRefGoogle Scholar
Phillips, J.A.I., Beamer, W. G. & Bartke, A. (1982). Analysis of growth hormone genes in mice with genetic defects of growth hormone expression. Journal of Endocrinology 92, 405407.CrossRefGoogle ScholarPubMed
Pidduck, H. G. & Falconer, D. S. (1978). Growth hormone function in strains of mice selected for large and small size. Genetical Research 32, 195206.CrossRefGoogle ScholarPubMed
Polge, E. J.C, Barton, S.C, Surani, M. A. H., Miller, J. R., Wagner, T., Rottman, F., Camper, S. A., Elsome, K., Davis, A. J., Goode, J. A., Foxcroft, G. R. & Heap, R. B. (1989). Induced expression of a bovine growth hormone construct in transgenic pigs. In Biotechnology in Growth Regulation (ed. Heap, R.B, Prosser, C. G. and Lamming, G. E.). London: Butterworths.Google Scholar
Pursel, V. G., Miller, K. F., Bolt, D. J., Pinkert, C. A., Hammer, R. E., Palmiter, R. D. & Brinster, R. L. (1989). Insertion of growth hormone genes into pig embryos. In Biotechnology in Growth Regulation (ed. Heap, R.B., Prosser, C. G. and Lamming, G. E.). London: Butterworths.Google Scholar
Sabour, M. P., Ramsey, U. & Nagai, J. (1991). Decreased frequency of the rat growth-hormone transgene in mousepcpulaticns with or without selection for increased adult body-weight. Theoretical and Applied Genetics 81, 327332.CrossRefGoogle ScholarPubMed
Salmon, R. K., Berg, R. T., Yeh, F. C. & Hodgetts, R. B. (1988). Identification of a variant growth hormone haplotype in mice selected for high body weight. Genetical Research 52, 715.CrossRefGoogle ScholarPubMed
Sharp, G. L., Hill, W. G. & Robertson, A. (1984). Effects of selection on growth, body composition and food intake in mice. I. Responses in selected traits. Genetical Research 43, 7592.CrossRefGoogle ScholarPubMed
Winkelmann, D. C. & Hodgetts, R. B. (1992). RFLPs for somatotropic genes identify quantitative trait loci for growth in mice. Genetics 131, 929937.CrossRefGoogle Scholar