Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T21:36:35.377Z Has data issue: false hasContentIssue false

The range of amino acids whose limitation activates general amino-acid control in Neurospora crassa

Published online by Cambridge University Press:  14 April 2009

Ilse B. Barthelmess
Affiliation:
Institut für Angewandte Genetik, Universität Hannover, D-3000 Hannover, FRG
Johanna Kolanus
Affiliation:
Institut für Angewandte Genetik, Universität Hannover, D-3000 Hannover, FRG
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several amino-acid synthetic enzymes, belonging to arginie, glutamine, leucine, lysine and phenylalanine biosynthesis, respectively, were investigated under conditions of reduced availability of any one of 16 out of the 20 amino acids represented in proteins. The enzymes showed simultaneous derepression under each condition, albeit to different degrees. Derepression was abolished and the remaining basal enzyme levels reduced by mutations at the cpc-1 locus which governs general amino-acid control in Neurospora. Glutamine synthetase was shown to be under cpc-1 and additional controls. The evidence emphasizes the global nature of general amino-acid control.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Barthelmess, I. B. (1982). Mutants affecting amino acid cross-pathway control in Neurospora crassa. Genetical Research 39, 169185.CrossRefGoogle ScholarPubMed
Barthelmess, I. B. (1984). A lethal allele at the putative regulatory locus, cpc-1, of cross-pathway control in Neurospora crassa. Molecular and General Genetics 194, 318321.CrossRefGoogle Scholar
Barthelmess, I. B. (1986). Regulation of amino acid synthetic enzymes in Neurospora crassa in the presence of high concentrations of amino acids. Molecular and General Genetics 203, 533537.CrossRefGoogle ScholarPubMed
Barthelmess, I. B., Curtis, C. F. & Kacser, H. (1974). Control of the flux to arginine in Neurospora crassa: de-repression of the last three enzymes of the arginine pathway. Journal of Molecular Biology 87, 303316.CrossRefGoogle ScholarPubMed
Bode, R. & Birnbaum, D. (1984). Charakterisierung von drei aromatischen Aminotransferasen aus Candida maltosa. Zeitschrift für Allgemeine Mikrobiologie 24, 6775.Google Scholar
Carsiotis, M. & Jones, R. F. (1974). Cross-pathway regulation: Tryptophan-mediated control of histidine and arginine biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 119, 889892.CrossRefGoogle ScholarPubMed
Carsiotis, M., Jones, R. F., Lacy, A., Cleary, T. J. & Frankhauser, D. B. (1970). Histidine-mediated control of tryptophan biosynthetic enzymes in Neurospora crassa. Journal of Bacteriology 104, 98106.CrossRefGoogle ScholarPubMed
Davis, R. H. (1962). A mutant form of ornithine trans-carbamylase found in a strain of Neurospora carrying a pyrimidine-proline suppressor gene. Archives of Biochemistry and Biophysics 97, 185191.CrossRefGoogle Scholar
Davis, R. H. (1979). Genetics of arginine biosynthesis in Neurospora crassa. Genetics 93, 557575.CrossRefGoogle ScholarPubMed
Ferguson, A. R. & Sims, A. P. (1971). Inactivation in vivo of glutamine synthetase and NAD-specific glutamate dehydrogenase: Its role in the regulation of glutamine synthesis in yeasts. Journal of General Microbiology 69, 423–127.CrossRefGoogle ScholarPubMed
Fincham, J. R. S. & Boulter, A. B. (1956). Effects of amino acids on transaminase production in Neurospora crassa: Evidence for four different enzymes. Biochemical Journal 62, 7277.CrossRefGoogle ScholarPubMed
Flint, H. J. & Kemp, B. F. (1981). General control of arginine biosynthetic enzymes in Neurospora crassa. Journal of General Microbiology 124, 129140.Google ScholarPubMed
Flint, H. J. & Wilkening, J. (1986). Cloning of the arg-12 gene of Neurospora crassa and regulation of its transcript via cross-pathway amino acid control. Molecular and General Genetics 203, 110116.CrossRefGoogle ScholarPubMed
Flint, H. J., Dible, S. & Kacser, H. (1985). Derepression of enzyme synthesis in response to arginine limitation in Neurospora crassa. Journal of General Microbiology 131, 28912900.Google ScholarPubMed
Hilton, J. L., Kearney, P. C. & Ames, B. N. (1965). Mode of action of the herbicide 3-amino-l,2,4-triazole (amitrole): inhibition of an enzyme of histidine biosynthesis. Archives of Biochemistry and Biophysics 112, 544547.CrossRefGoogle Scholar
Hinnebusch, A. (1988). Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiological Reviews 52, 248273.CrossRefGoogle ScholarPubMed
Jenkins, W. T. & Taylor, R. T. (1970). Branched-chain amino acid aminotransferase (pig heart, soluble). In Methods in Enzymology; vol. 17A (Tabor, H. and Tabor, C.), pp. 802807.Google Scholar
Mitchell, A. P. & Magasanik, B. (1984). Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae. Molecular and Cellular Biology 4, 27672773.Google ScholarPubMed
Olshan, A. R. & Gross, S. R. (1974). Role of the leu-3 cistron in the regulation of the synthesis of isoleucine and valine biosynthetic enzymes of Neurospora. Journal of Bacteriology 118, 374384.CrossRefGoogle ScholarPubMed
Paluh, J. L., Orbach, M. J., Legerton, T. L. & Yanofsky, C. (1988). The cross-pathway control gene of Neurospora crassa, cpc-1, encodes a protein similar to GCN4 of yeast and the DNA-binding domain of the oncogene v-jun-encoded protein. Proceedings of the National Academy of Sciences, USA 85, 37283732.CrossRefGoogle ScholarPubMed
Polacco, J. C. & Gross, S. R. (1973). The product of the leu-3 cistron as a regulatory element for the production of the leucine biosynthetic enzymes of Neurospora. Genetics 74, 443459.CrossRefGoogle ScholarPubMed
Saunders, P. P. & Broquist, H. P. (1966). Saccharopine, an intermediate of the amino adipic acid pathway of lysine biosynthesis. Journal of Biological Chemistry 241, 34353440.CrossRefGoogle Scholar
Vogel, H. J. (1964). Distribution of lysine among fungi: evolutionary implications. American Naturalist 98, 435446.CrossRefGoogle Scholar
Wek, R. C., Jackson, B. M. & Hinnebusch, A. G. (1989). Juxtaposition of domains homologous to protein kinases and histidinyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proceedings of the National Academy of Sciences, USA 86, 45794583.CrossRefGoogle Scholar