Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T16:40:59.057Z Has data issue: false hasContentIssue false

Quantitative variation and chromosomal location of satellite DNAs

Published online by Cambridge University Press:  14 April 2009

Wolfgang Stephan
Affiliation:
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstr. 20, D-6100 Darmstadt
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A model of the evolutionary accumulation of highly repeated DNA (HRDNA) is proposed. The accumulation of HRDNA sequences, which are organized largely in tandem arrays and whose functional significance is obscure, is explained here as a consequence of the action of the forces of amplification (promoting increase in copy numbers) and unequal crossing over, random drift and natural selection (controlling copy numbers). This model provides a general framework (i) to study the chromosomal location of satellite DNAs present in the genomes of all higher eukaryotes, and (ii) to explain the significant variation in the amounts of satellites which is frequently found among closely related species, but only rarely within a species. A review of the relevant data is included and open questions are identified.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

References

Alt, W. F., Kellems, R. D., Bertino, J. R. & Schimke, R. T. (1978). Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. Journal of Biological Chemistry 253, 13571370.CrossRefGoogle ScholarPubMed
Arnold, M. L. & Shaw, D. D. (1985). The heterochromatin of grasshoppers from the Caledia captiva species complex. II. Cytological organisation of tandemly repeated DNA sequences. Chromosoma (Berl.) 93, 183190.CrossRefGoogle Scholar
Baldwin, L. & Macgregor, H. C. (1985). Centromeric satellite DNA in the newt Triturus cristatus karelinii and related species: Its distribution and transcription on lamphbrush chromosomes. Chromosoma (Berl.) 92, 100107.Google Scholar
Barnes, S. R., Webb, D. A. & Dover, G. (1978). The distribution of satellite and main-band components in the melanogaster species subgroup of Drosophila. I. Fractionation of DNA in actinomycin D and distamycin A density gradients. Chromosoma (Berl). 67, 341363.Google Scholar
Bostock, C. J. & Clark, E. M. (1980). Satellite DNA in large marker chromosomes of methotrexate-resistant mouse cells. Cell 19, 709715.Google Scholar
Carpenter, A. T. C. & Baker, B. S. (1982). On the control of the distribution of meiotic exchange in Drosophila melanogaster. Genetics 101, 8184.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (ed.) (1985). The Evolution of Genome Size. Chichester: John Wiley.Google Scholar
Charlesworth, B., Langley, C. H. & Stephan, W. (1986). The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112, 947962.Google Scholar
Charlesworth, B., Mori, I. & Charlesworth, D. (1985). Genetic variation in recombination in Drosophila. III. Regional effects on crossing over and effects on nondisjunction. Heredity 55, 209222.CrossRefGoogle Scholar
Crow, J. F. & Kimura, M. (1970). An Introduction to Population Genetics Theory. New York: Harper and Row.Google Scholar
Dover, G. A. & Flavell, R. B. (eds.) (1982). Genome Evolution. London: Academic Press.Google Scholar
Ewens, W. J. (1979). Mathematical Population Genetics. Berlin: Springer.Google Scholar
Fanning, T. G. & O'Brien, S. J. (1986). Rapid evolution of satellite DNA loci in the family Felidae. Genetics 113 (Supplement), 40.Google Scholar
Forejt, J. (1973). Centromeric heterochromatin polymorphism in the house mouse. Evidence from inbred strains and natural populations. Chromosoma (Berl.) 43, 187201.Google Scholar
Fritsch, E. F., Lawn, R. M. & Maniatis, T. (1980). Molecular cloning and characterization of the human β-like globin gene cluster. Cell 19, 959972.CrossRefGoogle ScholarPubMed
Gall, J. G. & Atherton, D. D. (1974). Satellite DNA sequences in Drosophila virilis. Journal of Molecular Biology 85, 633664.Google Scholar
Ganal, M., Riede, I. & Hemleben, V. (1986). Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.). Journal of Molecular Evolution 23, 2330.CrossRefGoogle Scholar
Gelbart, W. M. & Chovnick, A. (1979). Spontaneous un-equal exchange in the rosy region of Drosophila melanogaster. Genetics 92, 849859.Google Scholar
Gosden, J. R., Mitchell, A. R., Seuanez, H. N. & Gosden, C. M. (1977). The distribution of sequences complementary to human satellite DNAs I, II and IV in the chromosomes of chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla) and orang utan (Pongo pygmaeus). Chromosoma (Berl.) 63, 253271.CrossRefGoogle ScholarPubMed
Hatch, F. T., Bodner, A. J., Mazrimas, J. A. & Moore, D. H. (1976). Satellite DNA and cytogenetic evolution. DNA quantity, satellite DNA and karyotypic variations in kangaroo rats (genus Dipodomys). Chromosoma (Berl.) 58, 155168.Google Scholar
Hennig, W. & Walker, P. M. B. (1970). Variations in the DNA from two rodent families (Cricetidae and Muridae). Nature 225, 915919.CrossRefGoogle ScholarPubMed
Hourcade, D., Dressler, D. & Wolfson, J. (1973). The amplification of ribosomal RNA genes involving a rolling circle intermediate. Proceedings National Academy of Sciences USA 70, 29262930.Google Scholar
Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985). Hypervariable ‘minisatellite’ regions in human DNA. Nature 314, 6773.Google Scholar
John, B. & Miklos, G. L. G. (1979). Functional aspects of satellite DNA and heterochromatin. International Review of Cytology 58, 1114.Google Scholar
Jones, J. D. G. & Flavell, R. B. (1982 a). The mapping of highly-repeated DNA families and their relationship to C-bands in chromosomes of Secale cereale. Chromosoma (Berl.) 86, 595612.Google Scholar
Jones, J. D. G. & Flavell, R. B. (1982 b). The structure, amount and chromosomal localisation of defined repeated DNA sequences in species of the genus Secale. Chromosoma (Berl.) 86, 613641.Google Scholar
Kurnit, D. M. (1979). Satellite DNA and heterochromatin variants: The case for unequal mitotic crossing over. Human Genetics 47, 169186.Google Scholar
Kurnit, D. M. & Maio, J. J. (1973). Subnuclear redistribution of DNA species in confluent and growing mammalian cells. Chromosoma (Berl.) 2, 2336.Google Scholar
Maresca, A., Singer, M. F. & Lee, T. N. H. (1984). Continuous reorganization leads to extensive polymorphism in a monkey centromeric satellite. Journal of Molecular Biology 179, 629649.Google Scholar
Musich, P. R., Brown, F. L. & Maio, J. J. (1980). Highly repetitive component alpha and related alphoid DNAs in man and monkeys. Chromosoma (Berl.) 80, 331348.Google Scholar
Pike, L. M., Carlisle, A., Newell, C., Hong, S.-B. & Musich, P. R. (1986). Sequence and evolution of rhesus monkey alphoid DNA. Journal of Molecular Evolution 23, 127137.Google Scholar
Rankejar, P. K., Lafontaine, J. G. & Pallotta, D. (1974). Characterization of repetitive DNA in rye (Secale cereale). Chromosoma (Berl.) 48, 427440.Google Scholar
Schimke, R. T. (1984). Gene amplification in cultured animal cells. Cell 37, 705713.CrossRefGoogle ScholarPubMed
Singer, M. F. (1982). Highly repeated sequences in mammalian genomes. International Review of Cytology 76, 67112.CrossRefGoogle ScholarPubMed
Southern, E. M. (1970). Base sequence and evolution of guinea-pig alpha-satellite DNA. Nature 227, 794798.CrossRefGoogle ScholarPubMed
Stephan, W. (1986 a). Recombination and the evolution of satellite DNA. Genetical Research 47, 167174.Google Scholar
Stephan, W. (1986 b). Nonlinear phenomena in the evolution of satellite DNA. Berichte der Bunsengesellschaft für Physikalische Chemie 90, 10291034.CrossRefGoogle Scholar
Szauter, P. (1984). An analysis of regional constraints on exchange in Drosophila melanogaster using recombination-defective meiotic mutants. Genetics 106, 4571.Google Scholar
Tautz, D. & Renz, M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 12, 41274138.CrossRefGoogle ScholarPubMed
Throckmorton, L. H. (1982). The virilis species group. In The Genetics and Biology of Drosophila, vol. 3b (ed. Ashburner, M., Carson, H. L. and Thompson, J. N.), pp. 227296London: Academic Press.Google Scholar
Walbot, V. & Goldberg, R. B. (1979). Plant genome organization and its relationship to classical plant genetics. In Nucleic Acids of Plants (eds. Hall, T. C. and Davies, J. W.). Boca Raton, Florida: CRC Press.Google Scholar
Walmsley, R. W., Chan, C. S. M., Tye, B.-K. & Petes, T. D. (1984). Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310, 157160.Google Scholar
Walsh, J. B. (1986). Persistence of tandemly arrayed multigene families. Implications for satellite and simplesequence DNAs Genetics (in press).Google Scholar
Wells, R. D., Büchi, H., Kössel, H., Ohtsuka, E. & Khorana, H. G. (1967). Studies on polynucleotides. LXX. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: DNA-like polymers containing repeating tetranucleotide sequences. Journal of Molecular Biology 27, 265272.Google Scholar
Yamamoto, M. (1979). Cytological studies of heterochromatin function in the Drosophila melanogaster male: Autosomal meiotic pairing, Chromosoma (Berl.) 72, 293328.Google Scholar