Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T14:11:34.472Z Has data issue: false hasContentIssue false

Quantitation of nuclear DNA in Ascaris lumbricoides: DNA constancy and chromatin diminution

Published online by Cambridge University Press:  14 April 2009

J. Pasternak
Affiliation:
Department of Biology, University of Waterloo, Waterloo, Ontario, CanadaN2L 3G1
R. Barrell
Affiliation:
Department of Biology, University of Waterloo, Waterloo, Ontario, CanadaN2L 3G1
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The DNA contents of nuclei during gametogenesis and embryogenesis in Ascaris lumbricoides were measured by Feulgen-microspectrophoto-metry. The variability in the mean value for the haploid amount of DNA in sperm from different males processed at different times was not significant when sperm cell samples were taken from the same region of the seminal vesicle. As the sperm mature, the extent of uptake of Feulgen dye decreases nonsystematically. A similar phenomenon occurs during embryogenesis, and as noted by others, primary oocytes in the terminal portion of the oviduct become Feulgen-negative. Feulgen-positive primary oocytes maintain a 4C DNA value without significant variation. Notwithstanding the differences in Feulgen-DNA values in certain types of nuclei, our evidence supports the view that in Ascaris lumbricoides the amount of intraspecific DNA has a constant value between individual organisms and from one generation to the next. About 34% of the DNA of the zygote is lost through chromatin diminution at the third embryonic cleavage. This quantity represents 0·23 pg DNA per haploid equivalent.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

References

REFERENCES

Beermann, S. (1966). A quantitative study of chromatin diminution in embryonic mitoses of Cyclops furcifer. Genetics 54, 567576.CrossRefGoogle ScholarPubMed
Boveri, T. (1887). Ueber Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anatomischer Anzeiger 2, 688693.Google Scholar
Davidson, E. H. (1968). Gene Activity in Early Development. New York: Academic Press Inc.Google Scholar
Fairbairn, D. (1955). Embryonic and postembryonic changes in the lipids of Ascaris lumbricoides eggs. Canadian Journal of Biochemistry and Physiology 33, 122129.CrossRefGoogle ScholarPubMed
Fand, S. B. (1970). Environmental conditions for optimal hydrolysis. In Introduction to Quantitative Cytochemistry, vol. ii, pp. 209221. New York: Academic Press Inc.Google Scholar
Garcia, A. M. & Iorio, R. (1966). Potential sources of error in two-wavelength cytophoto-metry. In Introduction to Quantitative Cytochemistry, pp. 215237. New York: Academic Press Inc.Google Scholar
Gledhill, B. L., Gledhill, M. P., Rigler, R. & Ringertz, N. R. (1966). Changes in deoxyribonucleoprotein during spermiogenesis in the bull. Experimental Cell Research 41, 652665.CrossRefGoogle ScholarPubMed
Lin, T. P. (1954). The chromosome cycle in Parascaris equorum (Ascaris megalocephala): Oogenesis and diminution. Chromosoma, 6, 175198.CrossRefGoogle ScholarPubMed
Mayall, B. H. (1969). Deoxyribonucleic acid cytophotometry of stained human leukocytes. I. Differences among cell types. Journal of Histochemistry and Cytochemistry 17, 249257.CrossRefGoogle ScholarPubMed
Monné, L. (1963). On cyclical alterations in the Feulgen staining of nuclei during the development of nematodes. Parasitology 53, 273283.CrossRefGoogle Scholar
Moritz, K. B. (1970 a). DNA-Variation im keimbahnbegrenzten Chromatin und autoradiographische Befunde zu seiner Funktion bei Parascaris equorum. Verhandlungen der Deutschen Zoologischen Gesellschaft 64, 3642.Google Scholar
Moritz, K. B. (1970 b). Quantitative aspects of chromosomal composition in Ascaris megalocephala. In Introduction to Quantitative Cytochemistry, vol. ii, pp. 5775. New York: Academic Press Inc.Google Scholar
Noeske, K. (1971). Discrepancies between cytophotometric Feulgen values and deoxyribonucleic acid content. Journal of Histochemistry and Cytochemistry 19, 169174.CrossRefGoogle ScholarPubMed
Pasteels, J. (1948). Recherches sur le cycle germinal chez l'ascaris. Etude cytochimique des acides nucléiques dans l'oogénèse, la spermatogénèse, et le développement chez Parascaris equorum Goetze. Archives de Biologie (Liege) 59, 405447.Google Scholar
Pasternak, J. & Haight, M. (1975). DNA accumulation during oogenesis in the free-Living nematode Panagrellus silusiae. Chromosoma 49, 279298.CrossRefGoogle Scholar
Patau, K. (1952). Absorption microphotometry of irregular objects. Chromosoma 5, 341362.CrossRefGoogle Scholar
Prescott, D. M., Murti, K. G. & Bostock, C. J. (1973). Genetic apparatus of Stylonychia sp. Nature 242, 576, 597–600.CrossRefGoogle ScholarPubMed
Rasch, E. M., Barr, J. H. & Rasch, R. W. (1971). The DNA content of sperm of Drosophilia melanogaster. Chromosoma 33, 118.CrossRefGoogle Scholar
Rasch, R. W. & Rasch, E. M. (1973). Kinetics of hydrolysis during the Feulgen reaction for deoxyribonucleic acid. A reevaluation. Journal of Histochemistry and Cytochemistry 21, 10531065.CrossRefGoogle ScholarPubMed
Searcy, D. G. & MacInnis, A. J. (1970). Measurements by DNA renaturation of the genetic basis of parasitic reduction. Evolution 24, 796806.CrossRefGoogle ScholarPubMed
Sin, W. C. & Pasternak, J. (1970). Number and DNA content of nuclei in the free-living nematode Panagrellus silusiae at each stage during postembryonic development. Chromosoma 32, 191204.Google ScholarPubMed
Swartz, F. J., Henry, M. & Floyd, A. (1967). Observations on nuclear differentiation in Ascaris. Journal of Experimental Zoology 164, 297308.CrossRefGoogle ScholarPubMed
Swift, H. H. (1950). The deoxyribose nucleic acid content of animal nuclei. Physiological Zoology 23, 169198.CrossRefGoogle Scholar
Tobler, H., Smith, K. D. & Ursprung, H. (1972). Molecular aspects of chromatin elimination in Ascaris lumbricoides. Developmental Biology 27, 190203.CrossRefGoogle ScholarPubMed
Tobler, H., Zulauf, E. & Kuhn, O. (1974). Ribosomal RNA genes in germ line and somatic cells of Ascaris lumbricoides. Developmental Biology 41, 218223.CrossRefGoogle ScholarPubMed
Wilson, E. B. (1928). The Cell in Development and Heredity. New York: The Macmillan Co.Google Scholar
Zajicek, D., Swartz, F. J. & Floyd, A. D. (1970). Ascaris suum and Toxocara canís: Radio-autographic detection of DNA in Feulgen-negative muscle nuclei. Experimental Parasitology 27, 516523.CrossRefGoogle Scholar