Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T11:59:11.001Z Has data issue: false hasContentIssue false

Properties of transgenic strains of Drosophila melanogaster containing I transposable elements from Drosophila teissieri

Published online by Cambridge University Press:  14 April 2009

Chantal Vaury
Affiliation:
Laboratoire de Biochimie Médicate, Universitée d' Auvergne, Place Henri Dunant, 63000 Clermont-Ferrand, France
Alain Pélisson
Affiliation:
Centre de Généetique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
Pierre Abad
Affiliation:
Station de Recherche de Nématologie et de Génétique Moléculaire des Invertéebrés, INRA, B.P 2078, 06606 Antibes Cedex, France
Alain Bucheton
Affiliation:
Centre de Généetique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I factors are transposable elements of Drosophila melanogaster similar to mammalian LINEs, that transpose by reverse transcription of an RNA intermediate and are responsible for the I–R system of hybrid dysgenesis. There are two categories of strains in this species: inducer, that contain about 15 I elements at the various sites on chromosomal arms, and reactive, that lack active I factors. I elements occur in various Drosophila species. Potentially functional I factors from Drosophila teissieri can transpose when introduced by P-element-mediated transformation in a reactive strain of Drosophila melanogaster. We have studied the properties of Drosophila melanogaster strains into which such an I factor from Drosophila teissieri, named Itei, was introduced. Typical hybrid dysgenesis is produced when males carrying Itei are crossed with reactive females. However, more than one copy of the element seems necessary to produce dysgenic traits, whereas only one I factor of Drosophila melanogaster seems to be sufficient. The copy number of Itei in transformed lines maintained by endogamous crosses increases rapidly and stabilizes at values similar to those observed in inducer strains. As Drosophila teissieri contains much fewer copies than the Drosophila melanogaster strains, this suggests that the copy number of I elements is not simply regulated by sequences present in the element itself.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

References

Abad, P., Vaury, C., Pélisson, A., Chaboissier, M. C., Busseau, I. & Bucheton, A. (1989). A long interspersed repetitive element -the I factor of Drosophila teissieri -is able to transpose in different Drosophila species. Proceedings of the National Academy of Sciences U.S.A. 86,88878891.CrossRefGoogle ScholarPubMed
Bucheton, A. (1978). Non-mendelian female sterility in Drosophila melanogaster: influence of ageing and thermic treatments. I. Evidence for a partly inheritable effect of these two factors. Heredity 41, 357369.CrossRefGoogle ScholarPubMed
Bucheton, A. (1979). Non-mendelian female sterility in Drosophila melanogaster: influence of ageing and thermic treatments. III. Cumulative effects induced by these factors. Genetics 93, 131142.CrossRefGoogle ScholarPubMed
Bucheton, A. (1990). I transposable elements and I–R hybrid dysgenesis in Drosophila. Trends in Genetics 6, 1621.CrossRefGoogle ScholarPubMed
Bucheton, A. & Picard, G. (1978). Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of reactivity levels. Heredity 40, 207223.CrossRefGoogle Scholar
Bucheton, A., Lavige, J. M., Picard, G., & L'Heritier, P. (1976). Non-mendelian female sterility in Drosophila melanogaster: quantitative variations in the efficiency of inducer and reactive strains. Heredity 36, 305314.CrossRefGoogle ScholarPubMed
Bucheton, A., Paro, R., Sang, H. M., PéLisson, A. & Finnegan, D. J. (1984). The molecular basis of I–R hybrid dysgenesis in Drosophila melanogaster: identification, cloning and properties of the I factor. Cell 38, 153163.CrossRefGoogle ScholarPubMed
Bucheton, A., Simonelig, M., Vaury, C. & Crozatier, M. (1986). Sequences similar to the I transposable element involved in I–R hybrid dysgenesis in Drosophila melanogaster occur in other Drosophila species. Nature 332, 650652.CrossRefGoogle Scholar
Chaboissier, M. C., Busseau, I., Prosser, J., Finnegan, D. J. & Bucheton, A. (1990). Identification of a potential RNA intermediate for transposition of the LINE-like element I factor in Drosophila melanogaster. EMBO Journal 9, 35573563.CrossRefGoogle ScholarPubMed
Crozatier, M., Vaury, C., Busseau, I., PéLisson, A. & Bucheton, A. (1988). Structure and genomic organization of I elements involved in I–R hybrid dysgenesis in Drosophila melanogster. Nucleic Acids Research 16, 91999213.CrossRefGoogle Scholar
De Frutos, R., Peterson, K. R. & Kidwell, M. G. (1992). Distribution of Drosophila melanogaster transposable element sequences in species of the obscura group. Chromosoma 101, 293300.CrossRefGoogle ScholarPubMed
Engels, W. R. (1989). P elements in Drosophila. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 437–484. New York: American Society for Microbiology.Google Scholar
Fawcett, D. H., Lister, C. K., Kellett, E. & Finnegan, D. J. (1986). Transposable elements controlling I–R hybrid dysgenesis in Drosophila melanogaster are similar to mammalian LINEs. Cell 47, 10071015.CrossRefGoogle ScholarPubMed
Jensen, S. & Heidmann, T. (1991). An Indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA-mediated transposition of LINE I element. EMBO Journal 10, 19271937.CrossRefGoogle ScholarPubMed
Karess, R. E. & Rubin, G. M. (1984). Analysis of P transposable element functions in Drosophila. Cell 38, 135146.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 80, 16551659.CrossRefGoogle ScholarPubMed
Montchamp-Moreau, C. (1990). Dynamics of P-M hybrid dysgenesis in P-transformed lines of D. simulans. Evolution 44, 194203.Google Scholar
Montgomery, E., Charlesworth, B. & Langley, C. (1987). A test for the role of natural selection in stabilization of transposable element copy number in a population of Drosophila melanogaster. Genetical Research 49, 3141.CrossRefGoogle Scholar
Pélisson, A. (1981). The I–R system of hybrid dysgenesis in Drosophila melanogaster: are I factor insertions responsible for the mutator effect of the 1-R interaction. Molecular and General Genetics 183, 123129.CrossRefGoogle Scholar
Pélisson, A. & Picard, G. (1979). Non-mendelian female sterility in Drosophila melanogaster: I factor mapping on inducer chromosomes. Genetica 50, 141148.CrossRefGoogle Scholar
PéLisson, A. & Bregliano, J. C. (1981). The I–R system of hybrid dysgenesis in Drosophila melanogaster: construction and characterization of a non-inducer stock. Biology of the Cell 40, 159164.Google Scholar
Pélisson, A. & Bregliano, J. C. (1987). Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I–R hybrid dysgenesis in Drosophila melanogaster. Molecular and General Genetics 207, 306313.CrossRefGoogle Scholar
PéLisson, A., Finnegan, D. J. & Bucheton, A. (1991). Direct evidence for retrotransposition of the I factor, a LINE element of Drosophila melanogaster. Proceedings of the National Academy of Sciences U.S.A. 88, 49074910.CrossRefGoogle ScholarPubMed
Picard, G. (1976). Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of the I factor. Genetics 83, 107123.CrossRefGoogle ScholarPubMed
Picard, G. (1978). Non-mendelian female sterility in Drosophila melanogaster: sterility in stocks derived from the genotypically inducer or reactive offspring of SF and RSF females. Biologie Cellulaire 31, 245254.Google Scholar
Picard, G. & Pélisson, A. (1979). Non-mendelian female sterility in Drosophila melanogaster: characterization of the non-inducer chromosomes of inducer strains. Genetics 91, 473489.CrossRefGoogle Scholar
Pritchard, M. A., Dura, J. M., Pélisson, A., Bucheton, A. & Finnegan, D. J. (1988). A cloned I factor is fully functional in Drosophila melanogaster; a possible mechanism for transposition. Molecular and General Genetics 214, 533540.CrossRefGoogle Scholar
Ronsseray, S. & Anxolabéhére, D. (1986). Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94, 433440.CrossRefGoogle Scholar
Rubin, G. M. (1983). Dispersed repetitive DNAs in Drosophila. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 329361. Academic Press.Google Scholar
Simmons, M. J., Raymond, J. D., Boedigheimer, M. J. & Zunt, J. R. (1987). The influence of nonautonomous P elements on hybrid dysgenesis in Drosophila melanogaster. Genetics 117, 671685.CrossRefGoogle ScholarPubMed
Simonelig, M., Bazin, C., PéLisson, A. & Bucheton, A. (1988). Transposable and non transposable elements similar to the I factor involved in inducer-reactive (I-R) hybrid dysgenesis in Drosophila melanogaster coexist in various Drosophila species. Proceedings of the National Academy of Sciences U.S.A. 85, 11411145.CrossRefGoogle Scholar
Stacey, S. N., Lansman, R. A., Brock, H. W. & Grigliatti, T. A. (1986). Distribution and conservation of mobile elements in the genus Drosophila. Molecular Biology and Evolution 36, 522534.Google Scholar
Steller, H. & Pirrotta, V. (1985). A transposable P vector that confers selectable G418 resistance to Drosophila larvae. EMBO Journal 4, 167171.CrossRefGoogle ScholarPubMed
Vaury, C., Pélisson, A. & Bucheton, A. (1989). The π-heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98, 215224.CrossRefGoogle ScholarPubMed
Vaury, C., Abad, P., PéLisson, A., Lenoir, A. & Bucheton, A. (1990). Molecular characteristics of the heterochromatic I elements from a reactive strain of Drosophila melanogaster. Journal of Molecular Evolution 31,424431.CrossRefGoogle ScholarPubMed