Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T17:11:06.927Z Has data issue: false hasContentIssue false

Production and modification of Mu (G–) phage particles in E. coli K12 and Erwinia

Published online by Cambridge University Press:  14 April 2009

Ariane Toussaint
Affiliation:
Laboratoire de Génétique, Université libre de Bruxelles, rue des Chevaux, 67, B 1640 Rhode St Genèse, Belgium
Eric Schoonejans
Affiliation:
Laboratoire de Génétique, Université libre de Bruxelles, rue des Chevaux, 67, B 1640 Rhode St Genèse, Belgium
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We studied the amount of Mu(G+) and Mu(G−) phages in different Mu lysates prepared either upon induction or upon infection of E. coli and Erwinia strains. We also looked at the level of expression of the modification function (mom) by Mu(G−) phages, both after induction and after infection of E. coli and Erwinia. The expression of mom seems to be regulated in the same manner in E. coli and in the strain of Erwinia carotovora tested. The proportion of both types of Mu(G+) and Mu(G−) phages in induced lysates is very variable and we found growth conditions favouring the production of Mu(G−) particles. This should extend the use of Mu as a genetic tool and as a generalized transducing phage to many enterobacteria.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Adams, M. H. (1959). Bacteriophages. New York: Interscience Publisher.CrossRefGoogle Scholar
Allet, B. & Bukhari, A. I. (1975). Analysis of Mu and λ-Mu hybrid DNAs by specific endonucleases. Journal of Molecular Biology 92, 529540.CrossRefGoogle ScholarPubMed
Arber, W. & Wauters-Willems, D. (1970). Host specificity of DNA produced by E. coli XII. The two restriction and modification systems of strain 15 T. Molecular and general Genetics 108, 203217.CrossRefGoogle Scholar
Bade, E. G. (1972). Asymmetric transcription of bacteriophage Mu-1. Virology, 10, 12051207.CrossRefGoogle ScholarPubMed
Campbell, A. (1961). Sensitive mutants of bacteriophage λ. Virology 14, 2232.CrossRefGoogle ScholarPubMed
Faelen, M., Mergeay, M., Gerits, J., Toussaint, A. & Lefebvre, N. (1981 a) Genetic mapping of a mutation conferring sensitivity to bacteriophage Mu in Salmonella typhimurium LT2. Journal of Bacteriology 146, 914919.CrossRefGoogle ScholarPubMed
Faelen, M., Toussaint, A., Lefèbvre, N., Mergeay, M., Thiry, G. & Braibson-Thiry, J. (1981 b). Certaines souches de Erwinia sont sensibles au bactériophage Mu. Archives Internationales de Physiologie et de Biochimie 89, B55–B56.Google Scholar
Gill, G. S., Hull, R. C. & Curtis, R. III. (1981). Mutator bacteriophage D108 and its DNA; an electron microscopic characterisation. Journal of Virology 37, 420430.CrossRefGoogle Scholar
Gottesman, M. & Yarmolinsky, M., (1968). The integration and excision of bacteriophage λ. Cold Spring Harbor Symposia on Quantitative Biology 33, 735739.CrossRefGoogle ScholarPubMed
Hamon, Y. & Péron, Y. (1961). Les propriétés antagonistes réciproques parmi les Erwinia. Discussion de la postition taxonomique de ce gènre. Comptes rendus hebdomadaires des séances de l'Académie des Sciences, du 31 juillet 1961, 253, 913914.Google Scholar
Hattman, S. (1979). Unusual modification of bacteriophage Mu DNA. Journal of Virology 32, 468475.CrossRefGoogle ScholarPubMed
Howe, M. M. (1973). Prophage deletion mapping of bacteriophage Mu-1. Virology 54, 93101.CrossRefGoogle ScholarPubMed
Howe, M. M., Schumm, J. W. & Taylor, A. L. (1979). The S and U genes of bacteriophage Mu are located in the invertible G segment of Mu DNA. Virology 92, 108124.CrossRefGoogle Scholar
Hull, R. A., Gill, G. S. & Curtis, R. III. (1978). Genetic characterization of Mu-like bacteriophage D108. Journal of Virology 27, 513518.CrossRefGoogle ScholarPubMed
Kahmann, R., Kamp, D. & Zipser, D. (1977). Mapping of restriction sites in Mu DNA. In DNA Insertion Elements, Plasmids and Episomes (ed. Bukhari, A., Shapiro, J. and Adhya, S.), pp. 335339. Cold Spring Harbor Laboratory.Google Scholar
Kamp, D. (1981). Invertible DNA; the G segment of bacteriophage Mu. Microbiology (ed. Schlessinger, D.). pp. 7376. ASM Publications.Google Scholar
Khatoon, H. & Bukhari, A. I. (1978). Bacteriophage Mu-induced modification of DNA is dependent upon a host function. Journal of Bacteriology 136, 423428.CrossRefGoogle ScholarPubMed
Miller, J. H. (1972). Experimental molecular genetics. Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y.Google Scholar
Résibois, A., Toussaint, A., Van Gijsegem, F. & Faelen, M. (1981). Physical characterization of mini-Mu and mini-D108 derivatives. Gene 14, 103113.CrossRefGoogle Scholar
Symonds, N. & Coelho, A. (1978). Role of the G segment in the growth of phage Mu. Nature 271, 573574.CrossRefGoogle Scholar
Taylor, A. L. (1963). Bacteriophage-induced mutations in Escherichia coli. Proceedings of the National Academy of Science 50, 10431051.CrossRefGoogle ScholarPubMed
Toussaint, A. (1976). The DNA modification function of temperate phage Mu-1. Virology 70, 1727.CrossRefGoogle ScholarPubMed
Toussaint, A. (1977). The modification function of bacteriophage Mu-1 requires both a bacterial and a phage function. Journal of Virology 23, 825826.CrossRefGoogle Scholar
Toussaint, A., Lefèbvre, N., Scott, J., Cowan, J. A., De Brijn, F. & Bukhari, A. I. (1978). Relationships between temperate phages Mu and P1. Virology 89, 146161.CrossRefGoogle ScholarPubMed
Toussaint, A., Desmet, L. & Faelen, M. (1980). Mapping of the modification function of temperate phage Mu-1. Molecular and General Genetics 177, 351353.CrossRefGoogle ScholarPubMed
Van De Putte, P., Cramer, S. & Giphart-Gassler, M. (1980). Invertible DNA determines host specificity of bacteriophage Mu. Nature 286, 218222.CrossRefGoogle ScholarPubMed
Wijffelman, C., Gassler, M., Stevens, W. F. & Van De Putte, P. (1974). On the control of transcription of bacteriophage Mu. Molecular and General Genetics 131, 8596.CrossRefGoogle ScholarPubMed