Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T08:00:55.329Z Has data issue: false hasContentIssue false

The production and behaviour of diploids of Coprinus lagopus

Published online by Cambridge University Press:  14 April 2009

Lorna A. Casselton
Affiliation:
Department of Botany, University College London
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Diploid strains of Coprinus lagopus have been synthesized from common A heterokaryons either as oidial colonies or sectors. The criteria of growth rate and colony morphology on selective medium were used to distinguish between diploid and heterokaryon colonies. The average oidial size and hyphal width of diploid strains was significantly greater than that of the haploid parental strains.

Diploid monokaryons were very stable and only rarely produced haploid segregants. However, aneuploid intermediates in haploidization have been identified and these segregated further to give haploid monokaryons with recombinant genomes.

Dikaryons formed from diploid and haploid strains produced fruiting bodies. Meiosis and basidiospore production were irregular owing to the formation of triploid or partially triploid fusion nuclei in the basidia. In contrast to their stability in monokaryons, diploid nuclei tended to be unstable when combined in a dikaryon with a haploid nucleus, and often underwent partial haploidization before fruiting. Segregation of genes in the basidiospore progeny reflected whether haploidization had occurred before or after the formation of the fruiting body. If the haploid nucleus had a B mating-type allele common to the diploid nucleus, haploidization effected loss of the common allele.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

References

REFERENCES

Barron, G. L. (1962). The parasexual cycle and linkage relationships in the storage rot fungus Penicillium expansum. Can. J. Bot. 40, 16031613.CrossRefGoogle Scholar
Buller, A. H. R. (1931). Researches on Fungi, Vol. IV. London: Longmans, Green.Google Scholar
Buxton, E. W. (1956). Heterokaryosis and parasexual recombination in pathogenic strains of Fusarium oxysporum. J. gen. Microbiol. 15, 133139.CrossRefGoogle ScholarPubMed
Buxton, E. W. (1962). Parasexual recombination in the Banana-wilt Fusarium. Trans. Br. mycol. Soc. 45, 274279.CrossRefGoogle Scholar
Clutterbuck, A. J. & Roper, J. A. (1964). Heterokaryosis in Aspergillus nidulans. Heredity, Lond. 19, 168.Google Scholar
Cowan, J. W. (1964). Ph.D. Thesis, London.Google Scholar
Crowe, L. K. (1960). The exchange of genes between nuclei of a dikaryon. Heredity, Lond. 15, 397405.CrossRefGoogle Scholar
Day, P. R. & Anderson, G. E. (1961). Two linkage groups in Coprinus lagopus. Genet. Res. 2, 414423.CrossRefGoogle Scholar
Ellingboe, A. H. (1963). Illegitimacy of specific factor transfer in Schizophyllum commune. Proc. natn. Acad. Sci. U.S.A. 49, 286292.CrossRefGoogle ScholarPubMed
Ellingboe, A. H. & Raper, J. R. (1962). Somatic recombination in Schizophyllum commune. Genetics, Princeton, 47, 8598.CrossRefGoogle ScholarPubMed
Elliott, C. G. (1960). The cytology of Aspergillus nidulans. Genet. Res. 1, 462476.CrossRefGoogle Scholar
Emerson, M. R. (1954). Some physiological characteristics of ascospore activation in Neurospora crassa. Pl. Physiol., Lancaster, 29, 418428.CrossRefGoogle ScholarPubMed
Holliday, R. (1961). Induced mitotic crossing-over in Ustilago maydis. Genet. Res. 2, 231248.CrossRefGoogle Scholar
Ikeda, Y., Ishitani, C. & Nakamura, K. (1957). A high frequency of heterozygous diploids and somatic recombination induced in imperfecti fungi by ultra-violet light. J. gen. appl. Microbiol., Tokyo, 3, 111.CrossRefGoogle Scholar
Ishitani, I., Ikeda, Y. & Sakaguchi, K. (1956). Hereditary variation and genetic recombination in Koji-molds (Aspergillus oryzae and Asp. sojae). VI. Genetic recombination in heterozygous diploids. J. Gen. appl. Microbiol., Tokyo, 2, 401430.CrossRefGoogle Scholar
Lewis, D. (1954). Comparative incompatibility in angiosperms and fungi. Adv. Genet. 6, 235285.CrossRefGoogle ScholarPubMed
Lewis, D. (1957). John Innes Horticultural Institution 48th Annual Report. 18.Google Scholar
Lewis, D. (1961). Genetic analysis of methionine suppressors in Coprinus. Genet. Res. 2, 141155.CrossRefGoogle Scholar
Luig, N. H. (1962). Recessive suppressors in A. nidulans closely linked to an auxotrophic mutant which they suppress. Genet. Res. 3, 331332, and unpublished data reported by Pontecorvo (1963).CrossRefGoogle Scholar
Papazian, H. P. (1950). Physiology of the incompatibility factors in Schizophyllum commune. Bot. Gaz. 112, 143163.CrossRefGoogle Scholar
Papazian, H. P. (1954). Exchange of incompatibility factors between nuclei of a dikaryon. Science, N.Y. 119, 691693.CrossRefGoogle ScholarPubMed
Parag, Y. (1962). Studies in somatic recombination in dikaryons of Schizophyllum commune. Heredity, Lond. 17, 305318.CrossRefGoogle Scholar
Pontecorvo, G. (1956). The parasexual cycle in fungi. A. Rev. Microbiol. 10, 393400.CrossRefGoogle ScholarPubMed
Pontecorvo, G. (1963). Microbial genetics retrospect and prospect. The Leeuwenhoek Lecture. Proc. R. Soc. B, 158, 123.Google Scholar
Pontecorvo, G. & Käfer, E. (1958). Genetic analysis based on mitotic recombination. Adv. Genet. 9, 71104.CrossRefGoogle ScholarPubMed
Pontecorvo, G. & Roper, J. A. (1952). Genetic analysis without sexual reproduction by means of polyploidy in Aspergillus nidulans. Proc. J. gen. Microbiol. 6, vii.Google Scholar
Pontecorvo, G., Roper, J. A. & Forbes, E. (1953). Genetic recombination without sexual reproduction in Aspergillus niger. J. gen. Microbiol. 8, 198210.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Adv. Genet. 5, 141238.CrossRefGoogle ScholarPubMed
Pontecorvo, G. & Sermonti, G. (1954). Sexual recombination in Penicillium chrysogenum. J. gen. Microbiol. 11, 94104.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Tarr Gloor, E. & Forbes, E. (1954). Analysis of mitotic recombination in Aspergillus nidulans. J. Genet. 52, 226237.CrossRefGoogle Scholar
Quintanilha, A. (1938). Troisième contribution à l'étude génétique du phenomène de Buller. C. r. Séanc. Soc. Biol. 129, 730734.Google Scholar
Raper, J. R. & Oettinger, M. T. (1962). Anomalous segregation of incompatibility factors in Schizophyllum commune. Revta. Biol. 3, 205221.Google Scholar
Roberts, C. F. (1962). A difference in the complementarity of pairs of mutants when combined in heterokaryons or heterozygous diploids. Aspergillus News Letter, 3, 68.Google Scholar
Roper, J. A. (1952). Production of heterozygous diploids in filamentous fungi. Experientia, 8, 1415.CrossRefGoogle ScholarPubMed
Swiezynski, K. M. (1962). Analysis of an incompatible di-mon mating in Coprinus lagopus. Acta Soc. Bot. Pol. 31, 169184.CrossRefGoogle Scholar
Swiezynski, K. M. (1963). Somatic recombination of two linkage groups in Coprinus lagopus. Genet. pol. 4, 2136.Google Scholar
Swiezynski, K. M. & Day, P. R. (1960 a). Heterokaryon formation in Coprinus lagopus. Genet. Res. 1, 114128.CrossRefGoogle Scholar
Swiezynski, K. M. & Day, P. R. (1960 b). Migration of nuclei in Coprinus lagopus. Genet. Res. 1, 129139.CrossRefGoogle Scholar