Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T21:00:09.558Z Has data issue: false hasContentIssue false

Population dynamics of DNA fingerprint patterns within and between populations

Published online by Cambridge University Press:  14 April 2009

Li Jin
Affiliation:
Center for Demographic and Population Genetics, Graduate School of Biomedical Sciences, University of Texas at Houston Health Science Center, Houston, Texas
Ranajit Chakraborty*
Affiliation:
Center for Demographic and Population Genetics, Graduate School of Biomedical Sciences, University of Texas at Houston Health Science Center, Houston, Texas
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

DNA fingerprint is a pattern of a variable number of bands (DNA fragments) with different sizes on a Southern gel for each individual, generated by one or many VNTR loci. Genetic divergence between individuals within and between populations can be studied in terms of number of shared bands between individuals. Using a population genetic model we show that the expectations of measures of genetic distance between populations based on band sharing data from DNA fingerprint patterns are functions of composite parameters M = 4Nv, and time of divergence (t) between populations, where N is the effective size of the populations, and ν, the mutation rate. The expected genetic distance remains linear with time of divergence at least up to N generations as long as the average heterozygosity at the DNA fingerprint loci remains at or below 90%. Neither incomplete knowledge of the allele frequencies at each locus, nor the unknown number of loci underlying DNA fingerprint pattern, compromise these evolutionary dynamics of DNA fingerprint patterns. Applications of this theory to data on three human populations, and review of literature indicate that co-migration of alleles, and the presence of syntenic loci underlying the fingerprint pattern have little impact of the reliability of evolutionary conclusions from DNA fingerprint studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

References

Armour, J. A., Povey, S., Jeremiah, S. & Jeffreys, A. J. (1990). Systematic cloning of human minisatellites from ordered array charomid libraries. Genomics 8, 501512.CrossRefGoogle ScholarPubMed
Bockel, B., Nürnberg, P. & Krawczak, M. (1992). Likelihoods of multilocus DNA fingerprints in extended families. American Journal of Human Genetics 51, 554561.Google ScholarPubMed
Chakraborty, R. & Rao, C. R. (1991). Measurement of genetic variation for evolutionary studies. In Handbook of Statistics, Vol. 8 (ed. Rao, C. R. and Chakraborty, R.). Amsterdam/London/New York/Tokyo: North-Holland.Google Scholar
Chakraborty, R., Fornage, M., Gueguen, R. & Boerwinkle, E. (1991). Population genetics of hypervariable loci: analysis of PCR based VNTR polymorphism within a population. In DNA Fingerprinting: Approaches and Applications (ed. Burke, T., Dolf, G., Jeffreys, A. J. and Wolff, R.). Basel/Boston/Berlin: Birkhäuser Verlag.Google Scholar
Chakraborty, R., Deka, R., Jin, L. & Ferrell, R. E. (1992). Allele sharing at six 1VNTR loci and genetic distances among three ethnically defined human populations. American Journal of Human Biology 4, 387397.CrossRefGoogle Scholar
Chakraborty, R. & Jin, L. (1993). Determination of relatedness between individuals by DNA fingerprinting. Human Biology 65, 875895.Google ScholarPubMed
Clark, A. G. (1987). Neutrality tests of highly polymorphic restriction fragment length polymorphisms. American Journal of Human Genetics 41, 948956.Google ScholarPubMed
Edwards, A., Civitello, A., Hammond, H. A. & Caskey, C. T. (1991). DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. American Journal of Human Genetics 49, 746756.Google ScholarPubMed
Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T. & Chakraborty, R. (1992). Genetic variation at five trimeric and tetrameric random repeat loci in four human population groups. Genomics 12, 241253.CrossRefGoogle Scholar
Flint, J., Boyce, A. J., Martinson, J. J. & Clegg, J. B. (1989). Population bottlenecks in Polynesia revealed by mini-satellite. Human Genetics 83, 257263.CrossRefGoogle Scholar
Gilbert, D. A., Lehman, N., O'Brien, S. J. & Wayne, R. K. (1990). Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature 344, 764767.CrossRefGoogle ScholarPubMed
Gilbert, D. A., Packer, C., Pusey, A. E., Stephens, J. C. & O'Brien, S. J. (1991). Analytical DNA fingerprinting in lions: Parentage, genetic diversity, and kinship. Journal of Heredity 82, 378386.CrossRefGoogle ScholarPubMed
Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985 a). Hypervariable ‘minisatellite’ regions in human DNA. Nature 314, 6773.CrossRefGoogle ScholarPubMed
Jeffreys, A. J., Wilson, V. & Thein, S. L. (1985 b). Individual-specific ‘fingerprints’ of human DNA. Nature 316, 7679.CrossRefGoogle ScholarPubMed
Jeffreys, A. J., Brookfield, J. F. Y. & Semeonoff, R. (1985 c). Positive identification of an immigration test-case using human DNA fingerprints. Nature 317, 818819.CrossRefGoogle ScholarPubMed
Jeffreys, A. J., Royle, N. J., Wilson, V. & Wong, Z. (1988). Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332, 278281.CrossRefGoogle ScholarPubMed
Jin, L. & Chakraborty, R. (1993). A bias-corrected estimate of heterozygosity for single-probe multilocus DNA fingerprints. Molecular Biology and Evolution 10, 11121114.Google ScholarPubMed
Kelly, R., Bulfield, G., Collick, A., Gibbs, M. & Jeffreys, A. J. (1989). Characterization of a highly unstable mouse minisatellite locus: Evidence for somatic mutation during early development. Genomics 5, 844856.CrossRefGoogle ScholarPubMed
Kimura, M. (1968). Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetical Research 11, 247269.CrossRefGoogle Scholar
Kimura, M. & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics 49, 725738.CrossRefGoogle Scholar
Krawczak, M. & Bockel, B. (1992). A genetic factor model for the statistical analysis of multilocus DNA fingerprints. Electrophoresis 13, 1017.CrossRefGoogle Scholar
Li, C. C., Weeks, D. E. & Chakraborty, A. (1993). Similarity of DNA fingerprints due to chance and relatedness. Human Heredity 43, 4552.CrossRefGoogle ScholarPubMed
Li, W.-H. & Nei, M. (1975). Drift variances of heterozygosity and genetic distance in transient states. Genetical Research 25, 229248.CrossRefGoogle ScholarPubMed
Lynch, M. (1988). Estimation of relatedness by DNA fingerprinting. Molecular Biology and Evolution 5, 584599.Google ScholarPubMed
Lynch, M. (1990). The similarity index and DNA fingerprinting. Molecular Biology and Evolution 7, 478484.Google ScholarPubMed
Lynch, M. (1991). Analysis of population genetic structure by DNA fingerprinting. In DNA Fingerprinting: Approaches and Applications (ed. Burke, T., Dolf, G., Jeffreys, A. J. and Wolff, R.). Basel/Boston/Berlin: Birkhauser Verlag.Google Scholar
Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujimoto, E., Hoff, M., Kumlin, E. & White, R. (1987). Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235, 16161622.CrossRefGoogle ScholarPubMed
Nei, M. (1972). Genetic distance between populations. American Naturalist 106, 283292.CrossRefGoogle Scholar
Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583590.CrossRefGoogle ScholarPubMed
Nei, M. (1987). Molecular Evolutionary Genetics. New York: Columbia University Press.CrossRefGoogle Scholar
Nei, M. & Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endo-nucleases. Proceedings of National Academy of Sciences USA 76, 52695273.CrossRefGoogle Scholar
Royle, N. J., Clarkson, R. E., Wong, Z. & Jeffreys, A. J. (1988). Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3, 352360.CrossRefGoogle ScholarPubMed
Saitou, N. & Nei, M. (1986). The number of nucleotides required to determine the branching order of three species with special reference to the human-chimpanzee-gorilla divergence. Journal of Molecular Evolution 24, 189204.CrossRefGoogle Scholar
Shriver, M. D., Jin, L., Chakraborty, R. & Boerwinkle, E. (1993). VNTR allele frequency distributions under the stepwise mutation model: A computer simulation approach. Genetics 134, 983993.CrossRefGoogle Scholar
Stephens, J. C., Gilbert, D. A., Yuhki, N. & O'Brien, S. J. (1992). Estimation of heterozygosity for single-probe multilocus DNA fingerprints. Molecular Biology and Evolution 9, 729743.Google ScholarPubMed
Wong, Z., Wilson, V., Jeffreys, A. J. & Thein, S. L. (1986). Cloning a selected fragment from a human DNA ‘fingerprint’: Isolation of an extremely polymorphic minisatellite. Nucleic Acids Research 14, 46054616.CrossRefGoogle ScholarPubMed
Wong, Z., Wilson, V., Patel, I., Povey, S. & Jeffreys, A. J. (1987). Characterization of a panel of highly variable minisatellites cloned from human DNA. Annual of Human Genetics 51, 269288.CrossRefGoogle ScholarPubMed
Wright, S. (1949). Genetics of populations. Encyclopedia Britannica, 14th ed. 10, 111112.Google Scholar
Yuhki, N. & O'Brien, S. J. (1990). DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history. Proceedings of National Academy of Sciences USA 87, 836840.CrossRefGoogle ScholarPubMed
Zischler, H., Nanda, I., Schäfer, R., Schmid, M. & Epplen, J. T. (1989). Digoxigenated oligonucleotide probes specific for simple repeats in DNA fingerprinting and hybridization in situ. Human Genetics 82, 227233.CrossRefGoogle ScholarPubMed