Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T07:38:52.807Z Has data issue: false hasContentIssue false

Polymorphism in a varied environment: how robust are the models?

Published online by Cambridge University Press:  14 April 2009

J. Maynard Smith
Affiliation:
School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, U.K.
R. Hoekstra
Affiliation:
Rijksuniversiteit te Groningen, Vakgroep Genetica, Biologisch Centrum, Kerklaan 30, Haren (Gn), The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper shows that a number of models of the maintenance of polymorphism in a heterogeneous environment, including those of Levene and Dempster, can be derived from a simple assumption about the way in which the numbers and kinds of individuals emerging from a niche depend on the number of eggs laid in it. It is shown that for such models, unless selective advantages per locus are large, protected polymorphism requires that the relative niche sizes lie in a narrow range. This lack of robustness applies also to models of stable polymorphism proposed by Clarke and by Stewart & Levin. Excluding models relaying on habitat selection or restricted migration, the only models which may escape this criticism are diploid models with partial dominance with respect to fitness, such as one proposed by Gillespie, in which in all niches the fitness of heterozygotes is higher than the arithmetic mean of the homozygotes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

References

REFERENCES

Clarke, B. (1972). Density-dependent selection. American Naturalist 106, 113.CrossRefGoogle Scholar
Clarke, B. (1979). The evolution of genetic diversity. Proceedings of the Royal Society B 206, 453474.Google Scholar
Clarke, B. & Allendorf, F. W. (1979). Frequency-dependent selection due to kinetic differences between allozymes. Nature 279, 732734.CrossRefGoogle ScholarPubMed
Crow, J. F. & Temust, R. G. (1964). Evidence for the partial dominance of recessive lethal genes in natural populations of Drosophila. American Naturalist 98, 2133.CrossRefGoogle Scholar
de Jong, G. (1976). A model of competition for food. I. Frequency-dependent viabilities. American Naturalist 110, 10131027.Google Scholar
Dempster, E. R. (1955). Maintenance of genetic heterogeneity. Cold Spring Harbor Symposia on Quantitative Biology 20, 2532.Google Scholar
Gillespie, J. H. (1976). A general model to account for enzyme variation in natural populations. II. Characterization of the fitness functions. American Naturalist 110, 809821.CrossRefGoogle Scholar
Gillespie, J. H. (1977). A general model to account for enzyme variation in natural populations. IV. The quantitative genetics of viability mutants. In Measuring Selection in Natural Populations (ed. Christiansen, F. B. and Fenchel, T. M.), pp. 301314. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Hoekstra, R. F. (1978). Sufficient conditions for polymorphism with cyclical selection in a subdivided population. Genetical Research 31, 6773.Google Scholar
Levene, H. (1953). Genetic equilibrium when more than one ecological niche is available. American Naturalist 87, 331333.CrossRefGoogle Scholar
Levins, R. (1962). Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function. American Naturalist 96, 361373.Google Scholar
Lotka, A. J. (1932). The growth of mixed populations: Two species competing for a common food supply. Journal of the Washington Academy of Sciences 21, 461469.Google Scholar
Maynard Smith, J. (1966). Sympatric speciation. American Naturalist 100, 637650.CrossRefGoogle Scholar
Mukai, T., Chigusa, S. T., Mettler, L. E. & Crow, J. F. (1972). Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72, 335355.Google Scholar
Stewart, F. M. & Levin, B. R. (1973). Partitioning of resources and the outcome of interspecific competition: a model and some general considerations. American Naturalist 107, 171198.CrossRefGoogle Scholar
Volterra, V. (1927). Variations and fluctuations in the numbers of coexisting animal species. Translation in The Golden Age of Theoretical Ecology (ed. Scudo, F. M. and Ziegler, J. R.). Berlin: Springer-Verlag.Google Scholar