Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T16:29:46.308Z Has data issue: false hasContentIssue false

On the role of unequal exchange in the containment of transposable element copy number

Published online by Cambridge University Press:  14 April 2009

Charles H. Langley*
Affiliation:
Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
Elizabeth Montgomery
Affiliation:
Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
Richard Hudson
Affiliation:
DBRA, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
Norman Kaplan
Affiliation:
DBRA, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
Brian Charlesworth
Affiliation:
Department of Ecology and Evolution, The University of Chicago, 1103 E 57th Street, Chicago, Illinois 60637
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A population genetics model of the role of asymmetric pairing and unequal exchange in the stabilization of transposable element copy number in natural populations is proposed and analysed. Monte Carlo simulations indicate that the approximations incorporated into the analysis are robust in the relevant parameter ranges. Given several simple assumptions concerning transposition and excision, equal and unequal exchange, and chromosome structure, predictions of the relative numbers of transposable elements in various regions of the Drosophila melanogaster genome are compared to the observed distribution of roo/B104 elements across chromosomal regions with differing rates of exchange, and between X chromosomes and autosomes. There is no indication of an accumulation of elements in the distal regions of chromosomes, which is expected if unequal exchange is reduced concomitantly with normal crossing over in the distal regions. There is, however, an indication of an excess of elements relative to physical length in the proximal regions of the chromosomes, which also have restricted crossing over. This observation is qualitatively consistent with the model's predictions. The observed distribution of elements between the mid-sections of the X chromosomes and autosomes is consistent with the predictions of one of two models of unequal exchange.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Aquadro, C. F., Deese, S. F., Bland, M. M., Langley, C. H. & Laurie-Ahlberg, C. C. (1986). Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114, 11651190.CrossRefGoogle ScholarPubMed
Bellis, M., Jubier-Maurin, V., Dod, B., Vanlerberghe, F., Laurent, A.-M., Senglat, C., Bonhomme, F. & Roizès, G. (1987). Distribution of two recently inserted long interspersed elements of the L1 repetitive family at the Alb and βg3 loci in wild mice populations. Molecular Biology and Evolution 4, 351363.Google ScholarPubMed
Brookfield, J. F. Y., Montgomery, E. & Langley, C. H. (1984). Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310, 330332.CrossRefGoogle Scholar
Brookfield, J. F. Y. (1986). Population biology of transposable elements. Philosophical Transactions Royal Society London B312, 217226.Google Scholar
Charlesworth, B. (1985). The population genetics of transposable elements. In Population Genetics and Molecular Evolution (ed. Ohta, T. and Aoki, K.), pp. 213232. Springer Verlag, Berlin.Google Scholar
Charlesworth, B. (1988). The maintenance of transposable elements in natural populations. In Plant Transposable Elements (ed. Nelson, O. E.). Council for Research Planning, Washington D.C. (in press).Google Scholar
Charlesworth, B. & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetical Research 42, 127.CrossRefGoogle Scholar
Charlesworth, B. & Langley, C. H. (1986). The evolution of self-regulated transposition of transposable elements. Genetics 112, 359383.CrossRefGoogle ScholarPubMed
Davis, P. S., Shen, M. W. & Judd, B. H. (1987). Asymmetrical pairing of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proceedings of the National Academy of Science USA 84, 174178.CrossRefGoogle Scholar
Felsenstein, J. & Yokoyama, S. (1976). The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics 83, 845859.CrossRefGoogle ScholarPubMed
Finnegan, D. J. (1985). Transposable elements in eukaryotes. International Review of Cytology 93, 281326.CrossRefGoogle ScholarPubMed
Goldberg, M. L., Sheen, J.-Y., Gehring, W. J. & Green, M. M. (1983). Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proceedings of the National Academy of Science USA 80, 50175021.CrossRefGoogle ScholarPubMed
Golding, G. B., Aquadro, C. F. & Langley, C. H. (1986). Sequence evolution within populations under multiple types of mutation. Proceedings of the National Academy of Science USA 83, 427431.CrossRefGoogle ScholarPubMed
Green, M. M. (1959). Spatial and functional properties of pseudo-alleles at the white locus in Drosophila melanogaster. Heredity 13, 302315.CrossRefGoogle Scholar
Judd, B. H. (1959). Studies on some position pseudoalleles at the white locus region in Drosophila melanogaster. Genetics 44, 3442.CrossRefGoogle Scholar
Kaplan, N. & Brookfield, J. F. Y. (1983). Transposable elements in Mendelian populations. III. Statistical results. Genetics 104, 485495.CrossRefGoogle ScholarPubMed
Langley, C. H., Brookfield, J. F. Y. & Kaplan, N. (1983). Transposable elements in Mendelian populations. I. A theory. Genetics 104, 457471.CrossRefGoogle ScholarPubMed
Langley, C. H., Montgomery, E. A. & Quattlebaum, W. F. (1982). Restriction map variation in the Adh region of Drosophila. Proceedings of the National Academy of Science USA 79, 56315635.CrossRefGoogle ScholarPubMed
Lefevre, G. (1976). A photographic representation of the polytene chromosomes of Drosophila melanogaster salivary glands. In The Genetics and Biology of Drosophila, vol. la (ed. Ashburner, M. and Novitski, E.), pp. 3136. Orlando: Academic Press.Google Scholar
Lehrman, M. A., Goldstein, J. L., Russell, D. W. & Brown, M. S. (1987). Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia. Cell 48, 827835.CrossRefGoogle Scholar
Leigh Brown, A. J. (1983). Variation at the 87A heat-shock locus in Drosophila melanogaster. Proceedings of the National Academy of Science USA 80, 53505354.CrossRefGoogle Scholar
Leigh Brown, A. J. & Moss, J. E. (1987). Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genetical Research 49, 121128.CrossRefGoogle Scholar
Lichten, M., Borts, R. H. & Haber, J. E. (1987). Meiotic gene conversion and crossing over between dispersed homologous sequences occurs frequently in Saccharomyces cerevisiae. Genetics 115, 233246.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster. Washington: Carnegie Institute.Google Scholar
Lindsley, D. L. & Sandler, L. (1977). The genetic analysis of meiosis in female Drosophila. Philosophical Transactions Royal Society London B271, 295312.Google Scholar
Lindsley, D. L. & Zimm, G. (1986). The genome of Drosophila melanogaster. Part 2. lethals; maps. Drosophila Information Service 64, 1158.Google Scholar
Lucchesi, J. C. & Suzuki, D. T. (1968). The inter-chromosomal control of recombination. Annual Review of Genetics 2, 5386.CrossRefGoogle Scholar
Maeda, N. & Smithies, O. (1986). The evolution of multigene families: human haptoglobin genes. Annual Review of Genetics 20, 81108.CrossRefGoogle ScholarPubMed
Meyerowitz, E. M. & Hogness, D. S. (1982). Molecular organization of a Drosophila puff site that responds to ecdysone. Cell 28, 165176.CrossRefGoogle ScholarPubMed
Miklos, G. L. G., Healy, M. J., Pain, P., Howells, A. J. & Russell, R. J. (1984). Molecular and genetic studies on the euchromatin-heterochromatin transition region of the X chromosome of Drosophila melanogaster. Chromosoma 89, 218227.CrossRefGoogle ScholarPubMed
Mikus, M. D. & Petes, T. D. (1982). Recombination between genes located on nonhomologous chromosomes in Saccharomyces cerevisiae. Genetics 101, 473483.CrossRefGoogle ScholarPubMed
Montgomery, E. A. & Langley, C. H. (1983). Transposable elements in Mendelian populations. II. Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104, 473483.CrossRefGoogle Scholar
Montgomery, E., Charlesworth, B. & Langley, C. H. (1987). A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genetical Research 49, 3141.CrossRefGoogle Scholar
Roeder, G. S. (1983). Unequal crossing over between yeast transposable elements. Molecular and General Genetics 190, 117121.CrossRefGoogle Scholar
Rubin, G. M. (1983). Dispersed repetitive DNAs in Drosophila. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 329361. Academic Press, New York.Google Scholar
Rudkin, G. T. (1965). The relative mutability of DNA in regions of the X chromosome of Drosophila melanogaster. Genetics 52, 665681.CrossRefGoogle ScholarPubMed
Scherer, G., Tschudi, C., Perera, J., Delias, H. & Pirrotta, V. (1982). B104, a new dispersed repeated gene family in Drosophila melanogaster and its analogies with retro-viruses. Journal of Molecular Biology 157, 435451.CrossRefGoogle Scholar
Schultz, J. & Redfield, H. (1951). Interchromosomal effects on crossing over in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology 16, 175197.CrossRefGoogle ScholarPubMed
Sturtevant, A. H. (1919). Contribution to the genetics of Drosophila melanogaster. III. Inherited linkage variations in the second chromosome. Carnegie Institute of Washington Publications 421, 305341.Google Scholar