Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T05:33:02.721Z Has data issue: false hasContentIssue false

Nutritional regulation of antennal/leg homoeotic mutants in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

Trevor Jowett
Affiliation:
Department of Biological Sciences, University of Sussex, Brighton, Sussex, England
James H. Sang
Affiliation:
Department of Biological Sciences, University of Sussex, Brighton, Sussex, England
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The expression of the antennal homoeotic mutant, Nasobemia, is shown to be strongly dependent on nutrition. Dietary deficiencies in any of the following: thiamine, calcium pantothenate, nicotinic acid or RNA, cause a curing of the homoeotic defect. It is demonstrated that the effects of thiamine and pantothenate are through limiting acetyl-CoA synthesis and that fatty acids are required for high penetrance of the Ns gene. Similar nutritional effects are described for other Antennapedia and aristapedia alleles. The period of sensitivity to nutritional changes is defined for Ns and compared with the period of temperature sensitivity. These results suggest the hypothesis that the homoeotic mutations Antennapedia and aristapedia share some common metabolic requirements which involve synthesis of acetyl-CoA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

References

REFERENCES

Bradshaw, M. D. (1976). Effects of nutritional variation on homoeotic gene action (Antp 50, ss a) in Drosophila. M.Phil, thesis, University of Sussex.Google Scholar
Burnet, B. & Sang, J. H. (1963). Dietary utilization of DNA and its derivatives by Drosophila melanogaster. Journal of Insect Physiology 9, 553562.CrossRefGoogle Scholar
Denell, R. E. (1972). The nature of reversion of a dominant gene of Drosophila melanogaster. Mutation Research 15, 221223.CrossRefGoogle ScholarPubMed
Denell, R. E. (1973). Homoeosis in Drosophila. I. Complementation studies with revertants of Ns. Genetics 75, 279297.CrossRefGoogle Scholar
Falk, D. R. & Nash, D. (1974). Pyrimidine auxotrophy in Drosophila. Normal-winged, auxotrophic and dominant auxotrophy at the rudimentary locus. Molecular General Genetics 131, 339349.CrossRefGoogle Scholar
Garciá-Bellido, A. (1977). Homoeotic and atavic mutations in Drosophila. American Zoologist 17, 613629.CrossRefGoogle Scholar
Geer, B. W. & Perille, T. J. (1977). Effects of dietary sucrose and environmental temperature on fatty acid synthesis in Drosophila melanogaster. Insect Biochemistry 7, 371379.CrossRefGoogle Scholar
Ginter, E. K., Ivanov, V. I. & Mglinetz, V. A. (1975). Morphogenetie mosaicism with respect to the homoeotic mutation ‘aristapedia’ in Drosophila melanogaster. Soviet Genetics 10 (3), 330336.Google Scholar
Grigliatti, T. & Suzuki, D. T. (1971). Temperature sensitive mutations in Drosophila melanogaster. VIII. The homoeotic mutant, ss a40a. Proceedings of the National Academy of Sciences, U.S.A. 68, 13071311.CrossRefGoogle Scholar
Kauffman, S. A. (1977). Chemical patterns, compartments and a binary epigenetie code in Drosophila. American Zoologist 17, 631648.CrossRefGoogle Scholar
Kaufman, T. (1978). Cytogenetic definition of a homoeotic gene complex in proximal 3R of Drosophila melanogaster. Genetics 88, 5051.Google Scholar
Keith, A. D. (1967 a). Fatty acid metabolism in Drosophila melanogaster: interactions between dietary fatty acids and de novo synthesis. Comparative Biochemistry and Physiology 21, 587600.CrossRefGoogle ScholarPubMed
Keith, A. D. (1967 b). Fatty acid metabolism in Drosophila melanogaster: formation of palmitoleate. Life Sciences 6, 213218.CrossRefGoogle ScholarPubMed
Knappe, J. (1970). Mechanism of biotin action. Annual Reviews in Biochemistry 39, 757776.CrossRefGoogle ScholarPubMed
Kouni, M. H. & Nash, D. (1977). Survival of D. melanogaster larvae on denned medium supplemented with naturally oecuring nucleosides and nucleic acid bases. Journal of Insect Physiology 23, 327331.CrossRefGoogle Scholar
Lewis, E. B. (1960). A new standard food medium. Drosophila Information Service 34, 117118.Google Scholar
Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature 276, 565570.CrossRefGoogle ScholarPubMed
Lilly, V. G. & Leonian, L. H. (1944). The anti-biotin effect of desthiobiotin. Science 99, 205206.CrossRefGoogle ScholarPubMed
Lynen, F., Matsuhashi, M., Numa, S. & Schweizer, A. (1963). Cellular control of fatty acid synthesis at enzymatic level. Biochemical Society Symposium (eds Popjack and Grant) 24, 4356.Google Scholar
Norby., (1973). Biochemical genetics of rudimentary mutants of D. melanogaster. I. Aspartate carbamoyl transferase levels in complementing and non-complementing strains. Hereditas 73, 1116.CrossRefGoogle ScholarPubMed
Postlethwait, J. H. & Girton, J. B. (1973). Development in genetic mosaics of aristapedia, homoeotic mutant of D. melanogaster. Proceedings of the National Academy of Sciences, U.S.A. 64, 176183.CrossRefGoogle Scholar
Postlethwait, J. H. & Schneiderman, H. A. (1971). Pattern formation and determination in the antenna of homoeotic mutant Antennapedia of Drosophila melanogaster. Developmental Biology 25, 606640.CrossRefGoogle ScholarPubMed
Sang, J. H. (1956). The quantitative nutritional requirements of Drosophila melanogaster. Journal of Experimental Biology 33, 4572.CrossRefGoogle Scholar
Sang, J. H. (1957). Utilization of dietary purines and pyrimidines by Drosophila melanogaster. Proceedings of the Royal Society of Edinburgh 66B, 339359.Google Scholar
Sang, J. H. (1966). Clearing Drosophila adults. Drosophila Information Service 41, 200.Google Scholar
Sang, J. H. (1978). Nutritional requirements of Drosophila. In Biology of Drosophila, vol 2 (ed. Ashburner and Wright).Google Scholar
Sang, J. H. & Burnet, B. (1963). Environmental modification of the eyeless phenotype in Drosophila melanogaster. Genetics 48, 235253.CrossRefGoogle ScholarPubMed
Sparrow, J. C. (1971). Eggwashing apparatus. Drosophila Information Service 47, 132.Google Scholar
Stepshin, V. P. & Ginter, E. K. (1974). A study of the homoeotic genes Antennapedix and Nasobemia in Drosophila melanogaster. III. Influence of temperature on penetrance and expressitivity of the Apx and Ns genes. Soviet Genetics 8, 12521257.Google Scholar
Stoppani, A. O. M., Actis, A. S., Deferrari, J. O. & Gonzalez, E. L. (1953). Role of sulphydryl groups of yeast carboxylase. Biochemical Journal 54, 378.CrossRefGoogle ScholarPubMed
Timoféef-Ressovsky., (1931). Gerichtetes Variieren in der phänotypischen Manifesterierung einiger Genovariationen von Drosophila funebris. Naturwissenschaften 19, 493497.CrossRefGoogle Scholar
Venters, D. (1971). Folate synthesis in Ae. aegypti and D. melanogaster larvae. Transactions of the Royal Society for Tropical Medicine and Hygiene 65, 687688.CrossRefGoogle Scholar
Waddington, C. & Clayton, R. (1953). A note on some alleles of aristapedia. Journal of Genetics 51, 123129.CrossRefGoogle Scholar
Webb, J. L. (1966). Enzyme and Metabolic Inhibitors, vol II. New York, London: Academic Press.Google Scholar