Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T04:12:35.818Z Has data issue: false hasContentIssue false

Nutritional conditional mutants of Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

E. R. Vyse
Affiliation:
Department of Genetics, University of Alberta Edmonton, Alberta, Canada
David Nash
Affiliation:
Department of Genetics, University of Alberta Edmonton, Alberta, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A small fraction of mutagen treated X chromosomes which would appear nonlethal in the Muller-5 test carried out on a yeast-containing medium act as lethals when tested on one or other of the defined Drosophila media. Such mutants have been termed ‘nutritional conditionals’. The three mutants obtained in this way have been characterized genetically, but have not yet been shown to act as simple auxotrophs.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

References

REFERENCES

Beadle, G. W. & Tatum, E. L. (1941). Genetic control of biochemical reactions in Neurospora. Proc. natn. Acad. Sci. U.S.A. 27, 499.CrossRefGoogle ScholarPubMed
Burnett, B. & Sang, J. H. (1963). Dietary utilization of DNA and its derivatives by Drosophila melanogaster (Meig.). J. Insect Physiol. 9, 553562.CrossRefGoogle Scholar
Eagle, H., Washington, C. & Freidman, S. M. (1966). The synthesis of homocystine, cystathionine and cystine by cultured diploid and heteroploid human cells. Proc. natn. Acad. Sci. U.S.A. 56, 156.CrossRefGoogle ScholarPubMed
Ellis, J. F. (1959). Reversal of an adenine and a cytidine requirement in axenic Drosophila culture. Physiol. Zoöl. 32, 2939.CrossRefGoogle Scholar
Geer, B. W. (1965). A new synthetic medium for Drosophila. Drosoph. Inf. Serv. 40, 96.Google Scholar
Hinton, T., Ellis, J. T. & Noyes, D. T. (1951). An adenine requirement in a strain of Drosophila. Proc. natn. Acad. Sci. U.S.A. 37, 293299.CrossRefGoogle Scholar
Hinton, T., Noyes, D. T. & Ellis, J. (1951). Amino acids and growth factors in a chemically defined medium for Drosophila. Physiol. Zoöl. 24, 335353.CrossRefGoogle Scholar
Kao, Fa-Ten & Puck, T. T. (1968). Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc. natn. Acad. Sci. U.S.A. 60, 1275.CrossRefGoogle ScholarPubMed
Langridge, J. (1965). Temperature-sensitive, vitamin-requiring mutants of Arabidopsis thaliana. Aust. J. biol. Sci. 18, 311321.CrossRefGoogle Scholar
Lewis, E. B. & Backer, F. (1968). Method of feeding ethyl methane sulfonate (EMS) to Drosophila males. Drosoph. Inf. Serv. 43, 193.Google Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Publs Carnegie Instn no. 627.Google Scholar
Nash, D. & Bell, J. (1968). Larval age and the pattern of DNA synthesis in polytene chromosomes. Can. J. Genet. Cytol. 10, 82.CrossRefGoogle ScholarPubMed
Price, F. M., Rotherham, J. & Evans, V. J. (1967). Pyrimidine nucleoside requirements of a neoplastic C3H mouse cell J. natn. Cancer Inst. 39, 529538.Google ScholarPubMed
Ritossa, F. M. & Spiegelman, S. (1965). Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region of Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 53, 737.CrossRefGoogle ScholarPubMed
Spencer, W. P. & Stern, C. (1948). Experiments to test the validity of the linear R-Dose/mutation frequency relation in Drosophila at low dosage. Genetics 33, 43.CrossRefGoogle ScholarPubMed