Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T06:45:02.589Z Has data issue: false hasContentIssue false

Nucleic acids in mummified plant seeds: biochemistry and molecular genetics of pre-Columbian maize

Published online by Cambridge University Press:  14 April 2009

Franco Rollo*
Affiliation:
Dipartimento di Biologia Molecolare, Cellulare e Animale, Università di Camerino, via F. Camerini 2, 1–62032 Camerino, Italy
Franco Maria Venanzi
Affiliation:
Dipartimento di Biologia Molecolare, Cellulare e Animale, Università di Camerino, via F. Camerini 2, 1–62032 Camerino, Italy
Augusto Amici
Affiliation:
Dipartimento di Biologia Molecolare, Cellulare e Animale, Università di Camerino, via F. Camerini 2, 1–62032 Camerino, Italy
*
* To whom correspondence should be sent.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nucleic acids fractions were isolated from pre-Columbian maize seeds and characterized using different approaches such as polyacrylamide gel electrophoresis, anti-DNA antibody binding, HPLC fractionation, molecular hybridization with cloned genes, and DNA amplification by the polymerase chain reaction. The nucleic acids were found to be very depolymerized (≤140 base pairs in length) and composed mainly of ribosomal RNA. Despite the very low amount and degree of polymerization of seed DNA, specific maize nuclear Mul, Mu4, Mu8 and, possibly, Mu5 element components could be detected, thanks to the use of amplification systems as short as 90 bp. The results suggest that evaluation of the relative proportions of Mu-type element components and, possibly, other maize genomic components in single mummified kernels, may offer a new key to the study of ancient maize populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Bewley, J. D. & Black, M. (1982). Physiology and Biochemistry of Seeds. Berlin: Springer-Verlag.Google Scholar
Carter, J. CCostantini, L.D'Annibale, C.Jones, J. R.Folk, R. L. & Sullivan, D. (1985). Population and agriculture: Magna Grecia in the fourth century B.C. In Italian Archaeology IV. The Cambridge Conference, part 1, The human Landscape (ed. Malone, C. and Stoddart, S.). Oxford: BAR International Series.Google Scholar
Chandler, V.Rivin, C. & Walbot, V. (1986). Stable nonmutator stocks of maize have sequences homologous to the Mul transposable element. Genetics 114, 10071021.CrossRefGoogle Scholar
Chen, E. J. & Seeburg, P. H. (1985). Supercoil sequencing: a fast simple method for sequencing plasmid DNA. DNA 4, 165170.CrossRefGoogle ScholarPubMed
Fleenor, D.Spell, M.Robertson, D. & Wessler, S. (1990). Nucleotide sequence of the maize Mutator element, Mu8. Nucleic Acids Research 18, 6725.CrossRefGoogle ScholarPubMed
Goldsbrough, P. B. & Cullis, C. A. (1981). Characterisation of the genes for ribosomal RNA in flax. Nucleic Acids Research 9, 13011309.CrossRefGoogle ScholarPubMed
Golenberg, E. D.Giannasi, D. E.Clegg, M. T.Smiley, C. J.Durbin, M.Henderson, D. & Zurawski, G. (1990). Chloroplast DNA sequence from a miocene Magnolia species. Nature 344, 656658.CrossRefGoogle ScholarPubMed
Goloubinoff, P.Paabo, S. & Wilson, A. C. (1991). Molecular characterization of ancient maize: potentials and pitfalls. In Corn and Culture in the Prehistoric New World (ed. Johannessen, S. and Hastorf, C. A). Boulder, CO: Westview Press (in the press).Google Scholar
Hallam, N. D. (1973). Fine structure of víable and nonviable rye and other embryos. In Seed Ecology (ed. Heydecker, W.), pp. 115143. London: Butterworths.Google Scholar
Higuchi, R.Bowman, B.Freiberger, M.Ryder, O. A. & Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282284.Google ScholarPubMed
Higuchi, R. G.Wrischnik, L. A.Oakes, E.George, M.Tong, B. & Wilson, A. C. (1987). Mitochondrial DNA of the extinct quagga: relatedness and extent of postmortem change. Journal of Molecular Evolution 25, 283287.CrossRefGoogle ScholarPubMed
Iltis, H. H. (1983). From teosinte to maize: the catastrophic sexual transmutation. Science 222, 886894.CrossRefGoogle ScholarPubMed
Maniatis, T.Fristsch, E. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Mattirolo, O. (1926). I vegetoli scoperti nella tomba dell' architetto kha edi sua moglie Merit nella necropoli di tebe dalla missione scientifica italiana diretta dal senatore E. Schiaparelli. Atti della Reale Accademia delle Sciente di Torino 61, 546568.Google Scholar
Osborne, D.Roberts, B.Payne, P. I. & Sen, S. (1974). Protein synthesis and viability in rye embrios. In Mechanism of Regulation of Plant Growth (ed. Bieleski, R. L.Ferguson, A. R. and Cresswell, M. M.), pp. 805812. Wellington: Bulletin 12,: The Royal Society of New Zealand.Google Scholar
Paabo, S. (1985). Preservation of DNA in ancient Egyptian mummies. Journal of Archaeological Science 12, 411417.CrossRefGoogle Scholar
Paabo, S. (1986). Molecular genetic investigations of ancient human remains. Cold Spring Harbor Symposia of Quantitative Biology 51 (1), 441446.CrossRefGoogle ScholarPubMed
Paabo, S.Gifford, J. A. & Wilson, A. C. (1988). Mitochondrial DNA sequences from a 7,000-year-old brain. Nucleic Acids Research 16, 97759787.CrossRefGoogle Scholar
Paabo, S.Higuchi, R. G. & Wilson, A. C. (1989). Ancient DNA and the polymerase chain reaction. Journal of Biochemical Chemistry 264, 97099712.Google ScholarPubMed
Paabo, S. and Wilson, A. C. (1991). Miocene DNA sequences - a dream come true? Current Biology 1, 4546.CrossRefGoogle Scholar
Palmer, J. D. & Herbon, L. J. (1988). Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. Journal of Molecular Evolution 28, 8797.CrossRefGoogle ScholarPubMed
Renfrew, J. M. (1969). The archaeological evidence for the domestication of plants: methods and problems. In The Domestication and Exploitation of Plants and Animals (ed. Ucko, P. J. and Dimbleby, G. W.), pp. 149172. London: Duckworth.Google Scholar
Rogan, P. K. & Salvo, J. J. (1990). The study of nucleic acids isolated from ancient remains. American Journal of Physical Anthropology (in the press).CrossRefGoogle Scholar
Rogers, S. O. & Bendich, A. J. (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology 5, 6976.CrossRefGoogle ScholarPubMed
Rollo, F. (1985). Characterisation by molecular hybridisation of RNA fragments isolated from ancient (1400 B.C.) seeds. Theoretical and Applied Genetics 71, 330333.CrossRefGoogle ScholarPubMed
Rollo, F. (1989). Comparison of maize and teosinte DNAs analysing actual and computer-simulated gel electrophoresis patterns of enzymatically amplified DNA. Journal of Genetics and Breeding 43, 179184.Google Scholar
Rollo, F.La Marca, A. & Amici, A. (1987). Nucleic acids in mummified plant seeds: screening of twelve specimens by gel-electrophoresis, molecular hybridization and DNA cloning. Theoretical and Applied Genetics 73, 501505.CrossRefGoogle ScholarPubMed
Rollo, F.Amici, A.Salvi, R. & Garbuglia, A.. (1988). Short but faithful pieces of ancient DNA. Nature 335, 774.Google ScholarPubMed
Saiki, R. K.Gelfand, D. H.Stoffel, S.Scharf, S. J.Higuchi, R.Horn, G. T.Mullis, K. B. & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487491.CrossRefGoogle ScholarPubMed
Smeenk, R. J. T.Van Rooijen, A. V. & Swaak, T. J. (1988). Dissociation studies of DNA/anti-DNA complexes in relation to anti-DNA avidity. Journal of Immunological Methods 109, 2735.CrossRefGoogle ScholarPubMed
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed
Talbert, L. E.Patterson, G. I. & Chandler, V. L. (1989). Mu transposable elements are structurally diverse and distributed throughout the genus Zea. Journal of Molecular Evolution 29, 2829.CrossRefGoogle ScholarPubMed
Venanzi, F. M. & Rollo, F.. (1990). Mummy RNA lasts longer. Nature 343, 2526.CrossRefGoogle ScholarPubMed
Wolfe, K. H.Li, W. H. & Sharp, P. M. (1987). Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences USA 84, 90549058.CrossRefGoogle ScholarPubMed
Zohary, D. & Hopf, M.. (1988). Domestication of Plants in the Old World. Oxford: Oxford University Press.Google Scholar