Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T06:49:53.607Z Has data issue: false hasContentIssue false

Neutral additive genetic variance in a metapopulation

Published online by Cambridge University Press:  01 December 1999

MICHAEL C. WHITLOCK
Affiliation:
Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For neutral, additive quantitative characters, the amount of additive genetic variance within and among populations is predictable from Wright's FST, the effective population size and the mutational variance. The structure of quantitative genetic variance in a subdivided metapopulation can be predicted from results from coalescent theory, thereby allowing single-locus results to predict quantitative genetic processes. The expected total amount of additive genetic variance in a metapopulation of diploid individual is given by 2Neσ2m (1 + FST), where FST is Wright's among-population fixation index, Ne is the eigenvalue effective size of the metapopulation, and σ2m is the mutational variance. The expected additive genetic variance within populations is given by 2Neσ2e(1 − FST), and the variance among demes is given by 4FSTNeσ2m. These results are general with respect to the types of population structure involved. Furthermore, the dimensionless measure of the quantitative genetic variance among populations, QST, is shown to be generally equal to FST for the neutral additive model. Thus, for all population structures, a value of QST greater than FST for neutral loci is evidence for spatially divergent evolution by natural selection.

Type
Research Article
Copyright
1999 Cambridge University Press