Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T01:43:09.506Z Has data issue: false hasContentIssue false

Mutant Hfr strains defective in transfer: restoration by F-like and I-like de-repressed R factors

Published online by Cambridge University Press:  14 April 2009

Marylyn Cooke
Affiliation:
M.R.C. Microbial Genetics Research Unit, London, W. 12, and Guinness–Lister Research Unit and Departments of Microbiology and Electron Microscopy, Lister Institute, Chelsea Bridge Road, London, S.W.1*
Elinor Meynell
Affiliation:
M.R.C. Microbial Genetics Research Unit, London, W. 12, and Guinness–Lister Research Unit and Departments of Microbiology and Electron Microscopy, Lister Institute, Chelsea Bridge Road, London, S.W.1*
A. M. Lawn
Affiliation:
M.R.C. Microbial Genetics Research Unit, London, W. 12, and Guinness–Lister Research Unit and Departments of Microbiology and Electron Microscopy, Lister Institute, Chelsea Bridge Road, London, S.W.1*
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mutants of Hfr strains of Escherichia coli K12 defective in conjugation owing to failure to produce sex pili were isolated by resistance to F-specific phage. Tests of the ability of six de-repressed F-like R factors and four de-repressed I-like R factors to restore Hfr donor behaviour to these mutants indicated that there were several ways in which such restoration could occur. Of a total of 26 defective mutants, 12 were restored by F-like R factors. In these twelve, the function of the integrated F factor was evidently restored, because the sex pili contained F pilin subunits, distinguishable from the R pilin by serological tests. In contrast, among the four I-like R factors, only two were effective, butin all 26 defective mutants; the restored Hfr bacteria produced only I-like pili. The I-like sex factors, in restoring Hfr donor behaviour, did not therefore act by complementing the defective F.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1970

References

REFERENCES

Achtman, M., Willetts, N. S. & Clark, A. J. (1968). Mutants of the E. coli F factor affecting its transfer. Genetics 60, 157 (only).Google Scholar
Brinton, C. C. (1965). The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram-negative bacteria. Transactions of New York Academy of Sciences 27, 10031054.CrossRefGoogle Scholar
Clowes, R. C. (1963). Co-operation of two sex factors in E. coli. K12. Biochemical and biophysical Research Communications 13, 449454.CrossRefGoogle Scholar
Cooke, M. & Meynell, E. (1969). Chromosomal transfer mediated by de-repressed R factors in FEscherichia coli K12. Genetical Research, Cambridge 14, 7987.CrossRefGoogle Scholar
Curtiss, R. & Stallions, D. R. (1969). Probability of F integration and frequency of stable Hfr donors in F+ populations of Escherichia coli K 12. Genetics 63, 2738.CrossRefGoogle ScholarPubMed
Cuzin, F. (1962). Mutants défectifs de l'épisome sexuel chez Escherichia coli K12. Compte rendu des Séances de l'Académie des Sciences 255, 11491151.Google Scholar
Cuzin, F. & Jacob, F. (1965). Analyse génétique fonctionnelle de l'épisome sexuel d' Escherichia coli K12. Compte rendu des Séances de l'Académie des Sciences 260, 20872090.Google Scholar
Cuzin, F. & Jacob, F. (1967). Mutations de l'épisome F d' Escherichia coli K12. 1. Mutations défectives. Annales de l' Institut Pasteur 112, 19.Google Scholar
Egawa, R. & Hirota, Y. (1962). Inhibition of fertility by multiple drug-resistance factor in Escherichia coli K 12. Japanese Journal of Genetics 37, 6669.Google Scholar
Fredericq, P. (1956). Recherches sur la fréquence des souches transductrices des propriétés colicinogènes. Compte rendu des Séances de la Société de Biologie 150, 10361039.Google Scholar
Frydman, A., Cooke, M., Meynell, E. & Meynell, G. G. (1970). Represser-insensitive mutants of the F sex factor. Journal of Molecular Biology 48, 177179.CrossRefGoogle ScholarPubMed
Frydman, A. & Meynell, E. (1969). Interactions between de-repressed F-like R factors and wild type eolicin R factors: superinfection immunity and repressor susceptibility. Genetical Research, Cambridge 14, 315332.CrossRefGoogle ScholarPubMed
Hirota, Y., Fnjii, T. & Nishimura, Y. (1966). Loss and repair of conjugal fertility and infectivity of the resistance factor and sex factor in Escherichia coli. Journal of Bacteriology 91, 12981304.CrossRefGoogle ScholarPubMed
Irno, T. (1969). Genetics and chemistry of bacterial flagella. Bacteriological Reviews 33, 454475.Google Scholar
Jacob, F. & Wollman, E. L. (1961). Sexuality and the Genetics of Bacteria. New York: Academic Press.Google Scholar
Kahn, P. L. (1969). Evolution of a site of specific genetic homology on the chromosome of Escherichia coli. Journal of Bacteriology 100, 269275.CrossRefGoogle ScholarPubMed
Kushner, D. J. (1969). Self-assembly of biological structures. Bacteriological Reviews 33, 302345.CrossRefGoogle ScholarPubMed
Lawn, A. M. & Meynell, E. (1970). (In preparation.)Google Scholar
Lawn, A. M., Meynell, E. & Cooke, M. (1970). (In preparation.)Google Scholar
Lawn, A. M., Meynell, E., Meynell, G. G. & Datta, N. (1967). Sex pili and the classification of sex factors in the Enterobacteriaceae. Nature 216, 343346.CrossRefGoogle ScholarPubMed
Maas, R. (1963). Exclusion of an Flac episome by an Hfr gene. Proceedings of National Academy of Sciences, U.S.A. 50, 10511055.CrossRefGoogle ScholarPubMed
Meynell, E. & Cooke, M. (1969). Represser-minus and operator-constitutive de-repressed mutants of F-like R factors: their effect on chromosomal transfer by HfrC. Genetical Research, Cambridge 14, 309313.CrossRefGoogle ScholarPubMed
Meynell, E. & Datta, N. (1967). Mutant drug resistance factors of high transmissibility. Nature 214, 885887.CrossRefGoogle ScholarPubMed
Meynell, E., Meynell, G. G. & Datta, N. (1968). Phylogenetic relationships of drug-resistance factors and other transmissible bacterial plasmids. Bacteriological Reviews 32, 5583.CrossRefGoogle ScholarPubMed
Meynell, G. G. & Aufreiter, E. (1969). Functional independence of F and I sex pili. Nature 223, 1069 (only).CrossRefGoogle ScholarPubMed
Nishimura, Y., Ishibashi, M., Meynell, E. & Hirota, Y. (1967). Specific piliation directed by the fertility factor and a resistance factor of Escherichia coli. Journal of general Microbiology 49, 8998.CrossRefGoogle Scholar
Novotny, C., Raizen, E., Knight, W. S. & Brinton, C. C. (1969). Functions of F pili in mating-pair formation and male bacteriophage infection studied by blending spectra and reappearance kinetics. Journal of Bacteriology 98, 13071319.CrossRefGoogle Scholar
Ohtsubo, E. & Nishimuba, Y. (1968). Proceedings of 12th International Congress of Genetics, Tokyo, p. 54.Google Scholar
Pearce, L. E. & Myenell, E. W. (1968 a). Mutation to high level streptomycin-resistance in R+ bacteria. Journal of general Microbiology 50, 173176.CrossRefGoogle ScholarPubMed
Pearce, L. E. & Myenell, E. W. (1968 b). Specific chromosomal affinity of a resistance factor. Journal of general Microbiology 50, 159172.CrossRefGoogle Scholar
Pearce, U. B. & Stocker, B. A. D. (1967). Phase variation of flagellar antigens in Salmonella; abortive transduction studies. Journal of general Microbiology 49, 335349.CrossRefGoogle ScholarPubMed
Romero, E. & Meynell, E. (1969). Covert fi - R factors in fi + R+ strains of bacteria. Journal of Bacteriology 97, 780786.CrossRefGoogle ScholarPubMed
Schell, J., Glover, S. W., Stacey, K. A., Broda, P. M. A. & Symonds, N. (1963). The restriction of phage T 3 by certain strains of Escherichia coli. Genetical Research, Cambridge 4, 483484.CrossRefGoogle Scholar
Smith, S. M., Ozeki, H. & Stocker, B. A. D. (1963). Transfer of ColE1 and colE2 during high-frequency transmission of colI in Salmonella typhimurium. Journal of general Microbiology 33, 231242.CrossRefGoogle ScholarPubMed
Taylor, A. L. & Trotter, C. D. (1967). Revised linkage map of Escherichia coli. Bacteriological Reviews 31, 332353.CrossRefGoogle ScholarPubMed