Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T06:35:50.288Z Has data issue: false hasContentIssue false

Multistep transduction of tryptophan (trp) genes in Escherichia coli

Published online by Cambridge University Press:  14 April 2009

J. P. Gratia
Affiliation:
Laboratory of Microbiology and Hygiene, University of Liège, Belgium
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Plaque-forming transducing (pt) particles of bacteriophage ø 80 have been used to transduce genes governing tryptophan synthesis. Main interest was devoted to strains which carry deletions extending for varying distances into the tryptophan (trp) operon, covering trp A and ending in trp B, trp C or further. If the deletion does not over-reach trp C, infection by pt particles carrying the trp (CBA)+ segment gives rise to stable partial diploids which express the complete tryptophan independence. If the deletion is further extended, transductants are not entirely complemented and appear only on medium containing indole. If the recipients do not carry any prophage in the attachment site of ø 80 (att80) the indole-requiring transductants are very unstable; if the recipients do carry such prophage, even defective, all transductants are very stable. Stable indole-requiring diploids can be superinfected by other pt phages carrying the complementary genes of the tryptophan operon, giving rise to supertransduced indole-independent bacteria. Transduction to complete independence of tryptophan or any precursor has also been achieved in three steps. Supertransductants yield after u.v. induction pt phages carrying the initial trp segments and segregate rare cells with incomplete ability to synthesize tryptophan. They are therefore polylysogenic polyploid heterogenotes carrying overlapping segments of the trp operon linked to prophage genomes.

When recipients are carrying a prophage in att80, transductants appear at a low frequency. The reduction is particularly pronounced with ø 80 pt transducing segment trp (CBA)+ to immune bacteria.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

References

REFERENCES

Calef, E., Marchalli, C. & Guerrini, F. (1965). The formation of superinfection double lysogens of phage λ in Escherichia coli K-12. Virology 27, 110.CrossRefGoogle ScholarPubMed
Deeb, S. S., Okamoto, K. & Hall, B. D. (1967). Isolation and characterization of non-defective transducing elements of bacteriophage ø 80. Virology 31, 289295.CrossRefGoogle Scholar
Franklin, N. C., Dove, W. F. & Yanofsky, C. (1965). The linear insertion of a prophage into the chromosome of E. coli shown by deletion mapping. Biochem. Biophys. Rea. Commun. 18, 910923.CrossRefGoogle Scholar
Gratia, J. P. (1964). Résistance à la colicine B chez E. coli. Relations de spécificité entre colicines B, I et V et phage T. 1. Etude génétique. Ann. Inst. Pasteur 107 (suppl. au no. 5), 132151. Thèse, Univ. Liège.Google Scholar
Gratia, J. P. (1967 a). Production de particules douées à la fois de propriétés infectieuses et transductrices par des souches d' Escherichia coli lysogènes défectives par suite d'une délétion chromosomique. Life Sci. 6, 209212.Google Scholar
Gratia, J. P. (1967 b). Transduction of try genes by phages ø 80 pt in Escherichia coli. J. gen. Microbiol. 48, 1, ii–iii.Google Scholar
Gratia, J. P. (1967 c). Variations du taux d'adsorption du bactériophage ø 80 en rapport avec la résistance à la colicine B. Antonie van Leeuwenhoek 33, 153158.CrossRefGoogle Scholar
Matsushiro, A. (1963). Specialized transduction of tryptophan markers in Escherichia coli K 12 by bacteriophage ø 80. Virology 19, 475482.CrossRefGoogle Scholar
Matsushiro, A., Sato, K. & Kida, S. (1964). Characteristics of the transducing elements of bacteriophage ø 80. Virology 23, 299306.CrossRefGoogle Scholar
Sato, K. & Matsushiro, A. (1965). The tryptophan operon regulated by phage immunity. J. molec. Biol. 14, 608610.CrossRefGoogle ScholarPubMed
Signer, E. R. (1964). Recombination between coliphages λ and ø80. Virology 22, 650651.CrossRefGoogle Scholar
Signer, E. R. (1965). Attachment specificity of prophage λdg. J. molec. Biol. 14, 582585.CrossRefGoogle ScholarPubMed
Taylor, M. & Yanofsky, C. (1966 a). Chromosomal relocation of prophage associated bacterial genes. J. Bact. 91, 14691476.CrossRefGoogle ScholarPubMed
Taylor, M. & Yanofsky, C. (1966 b). An explanation for the reduced frequency of double lysogenization. Virology 29, 502503.CrossRefGoogle ScholarPubMed
Yanofsky, C. & Lennox, E. S. (1959). Transduction and recombination study of linkage relationships among the genes controlling tryptophan synthesis in Escherichia coli. Virology 8, 425447.CrossRefGoogle ScholarPubMed