Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T20:55:39.873Z Has data issue: false hasContentIssue false

Morphology and behaviour of silver-stained chromatid cores in mitotic chromosomes analysed by whole mount electron microscopy

Published online by Cambridge University Press:  14 April 2009

Jian Zhao
Affiliation:
Department of Biology, Nankai University, Tianjin 300071, The People's Republic of China
Shaobo Jin
Affiliation:
Department of Biology, Nankai University, Tianjin 300071, The People's Republic of China
Shui Hao
Affiliation:
Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, The People's Republic of China
Ruiyang Chen
Affiliation:
Department of Biology, Nankai University, Tianjin 300071, The People's Republic of China
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using silver staining and the whole mount electron microscopy technique of squashed chromosomes, we studied the substructural organization and behaviour of chromatid cores in mitotic chromosomes of spermatogonia of the grasshopper Oedaleus infernalis during mitosis. It was found that the formation of mitotic chromatid cores takes place during the transition from prophase to prometaphase. Each chromosome contains two compact chromatid cores which are surrounded by a halo of dispersed argyrophilic material emanating radially from the cores. In early metaphase the chromatid core usually appears as an extended, slender network running longitudinally through the entire length of the chromatid, while in late metaphase the core frequently has a spiral appearance. In addition, our results revealed the existence of interconnections between sister chromatid cores along their entire length, as a result of which sister chromatid cores appear as a single interconnected core network in mitotic metaphase chromosomes. At this stage the core occupies a lateral position in each chromatid. However, during the transition from metaphase to anaphase, the interconnections are gradually released to allow the individualization of sister chromatid cores and the segregation of chromosomes. The core comes to occupy a central position in each segregated chromatid. These findings demonstrate the presence of an intrinsic interconnected core network within metaphase chromosomes which could be involved in the maintenance and segregation of chromosomes during mitosis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Adolph, K. W., Cheng, S. M., Laemmli, U. K., (1977 a). Role of nonhistone proteins in metaphase chromosome structure. Cell 12, 805816.CrossRefGoogle ScholarPubMed
Adolph, K. W., Cheng, S. M., Paulson, J. R. & Laemmli, U. K. (1977 b). Isolation of a protein scaffold from mitotic HeLa cell chromosomes. Proceedings of the National Academy of Sciences, USA 74, 49374941.CrossRefGoogle ScholarPubMed
Boy de la Tour, E. & Laemmli, U. K. (1988). The metaphase scaffold is helically folded: sister chromatids have predominately opposite helical handedness. Cell 55, 937944.CrossRefGoogle Scholar
Cooke, C. A., Heck, M. M. S. & Earnshaw, W. C. (1987). The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. Journal of Cell Biology 105, 20532067.CrossRefGoogle ScholarPubMed
Earnshaw, W. C. & Heck, M. M. S. (1985). Localization of topoisomerase II in mitotic chromosomes. Journal of Cell Biology 100, 17161725.CrossRefGoogle ScholarPubMed
Earnshaw, C. W. & Laemmli, U. K. (1983). Architecture of metaphase chromosomes and chromosome scaffolds. Journal of Cell Biology 86, 8493.CrossRefGoogle Scholar
Earnshaw, W. C. & Laemmli, U. K. (1984). Silver staining the chromosome scaffold. Chromosoma 89, 186192.CrossRefGoogle ScholarPubMed
Earnshaw, W. C., Halligan, N., Cooke, C., Heck, M. M. S. & Lin, L. F. (1985). Topoisomerase II is a structural component of mitotic chromosome scaffold. Journal of Cell Biology 100, 17091715.Google Scholar
Fletcher, J. M. (1979). Light microscope analysis of meiotic prophase chromosomes by silver staining. Chromosoma 72, 241249.CrossRefGoogle ScholarPubMed
Gasser, S. M., Laroche, T., Falquet, J., Boy de la Tour, E. & Laemmli, U. K. (1986). Metaphase chromosome structure: involvement of topoisomerase II. Journal of Molecular Biology 188, 613629.CrossRefGoogle ScholarPubMed
Hao, S., Jiao, M., Zhao, J., Xing, M. & Huang, B. (1994). Reorganization and condensation of chroma tin in mitotic prophase nuclei of Allium cepa. Chromosoma 103, 432440.CrossRefGoogle Scholar
Howell, W. M. & Black, D. A. (1980). Controlled silver staining of nucleolar organizer regions with a protective collioidal developer: a 1-step method. Experientia 36, 10141015.CrossRefGoogle Scholar
Howell, W. M. & Hsu, T. C. (1979). Chromosome core structure revealed by silver staining. Chromosoma 73, 6166.CrossRefGoogle ScholarPubMed
Maguire, M. P. (1978). Evidence for separate genetic control of crossing over and chiasma maintenance in maize. Chromosoma 65, 173183.CrossRefGoogle Scholar
Maguire, M. P. (1990). Sister chromatid cohesiveness: vital function, obscure mechanism. Biochemistry and Cell Biology 68, 12311242.CrossRefGoogle ScholarPubMed
Nokkala, S. (1985). Location and staining properties of axial core structures in grasshopper spermatocytes Hereditas 103, 111117.CrossRefGoogle Scholar
Nokkala, S. & Nokkala, C. (1986). Coiled internal structure of chromonema within chromosomes suggesting hierarchical coil model for chromosome structure. Hereditas 104, 2940.CrossRefGoogle Scholar
Pathak, S. & Hsu, T. C. (1979). Silver-stained structures in mammalian meiotic prophase. Chromosoma 70, 159203.CrossRefGoogle ScholarPubMed
Paulson, J. R. (1988). Scaffolding and radial loop: the structural organization of metaphase chromosomes. In Chromosomes and Chromatin, Vol. 3 (ed. Adolph, K. W.), pp. 336. Boca Raton, Fla: CRC Press.Google Scholar
Paulson, J. R. (1989). Scaffold morphology in histonedepleted HeLa metaphase chromosomes. Chromosoma 97, 289295.CrossRefGoogle ScholarPubMed
Paulson, J. R. & Laemmli, U. K. (1977). The structure of histone-depleted metaphase chromosomes. Cell 12, 817828.CrossRefGoogle ScholarPubMed
Rattner, J. B. (1992). Integrating chromosome structure with function. Chromosoma 101, 259264.CrossRefGoogle ScholarPubMed
Rattner, J. B., Kingwell, B. G. & Fritzler, M. J. (1988). Detection of distinct structural domains within the primary constriction using autoantibodies. Chromosoma 96, 360367.CrossRefGoogle ScholarPubMed
Rufas, J. S., Gimenez-Martin, G. & Esponda, P. (1982). Presence of a chromatid core in mitotic and meiotic chromosomes of grasshoppers. Cell Biology International Reports 6, 261267.CrossRefGoogle ScholarPubMed
Rufas, J. S., Gosalvez, J., Gemenez-Martin, G. & Esponda, P. (1983). Localization and development of kinetochores and a chromatid core during meiosis in grasshoppers. Genetica 61, 233238.CrossRefGoogle Scholar
Rufas, J. S., Gimenez-Abian, J., Suja, J. A. & Garcia, , de la Vega, C. (1987). Chromosome organization in meiosis revealed by light microscope analysis of silver-stained cores. Genome 29, 706712.CrossRefGoogle Scholar
Rufas, J. S., Santos, J. L., Diez, M. & Suja, J. A. (1992). Meiotic chromosome structure: relationship between the synaptonemal complex and the chromatid core. Genome 35, 10541061.CrossRefGoogle Scholar
Santos, J. L., Cipres, G. & Lacadena, J. R. (1987). Metaphase I chiasmata in silver-stained cores of bivalents in grasshopper spermatocytes. Genome 29, 235238.CrossRefGoogle Scholar
Satya-Prakash, K. L., Hsu, T. C. & Pathak, S. (1980). Behaviour of the chromosome core in mitosis and meiosis. Chromosoma 81, 18.CrossRefGoogle ScholarPubMed
Sentis, C., Rodrigues-Campos, A., Slockert, J. C. & Fernadez-Piqueras, J. (1984). Morphology of the axial structures in the neo-XY sex bivalent of Pycnogaster cucullata (Orthoptera) by silver impregnation. Chromosoma 90, 317321.CrossRefGoogle Scholar
Stack, S. M. (1991). Staining plant cells with silver. II. Chromosome cores. Genome 34, 900908.CrossRefGoogle Scholar
Suja, J. A., de la Torre, J., Gimenez-Abian, J. F., Garcia de la Vega, C. & Rufas, J. S. (1991). Meiotic chromosome structure: kinetochores and chromatid cores in standard and B-chromosomes of Arcyptera fusca (Orthoptera) revealed by silver staining. Genome 34, 1927.CrossRefGoogle ScholarPubMed
Uemura, T., Ohkura, H., Adachi, Y. & Morino, K. (1987). DNA topoisonmerase II is required for condensation and separation of mitotic chromosomes in S. Pombe, Cell 50, 917925.CrossRefGoogle Scholar
Zhao, J., Hao, S. & Xing, M. (1991). The fine structure of the mitotic chromosome core (scaffold) of Trilophidia annulata. Chromosoma 100, 323329.CrossRefGoogle Scholar
Zhao, J., He, M.-Y. & Hao, S. (1992). Formation of chromatid cores and synaptonemal complexes in meiotic chromosomes of Angaracris rhodopa. Chinese Journal of Genetics 19, 1319.Google Scholar
Zhao, J., Jin, S. & Hao, S. (1994). The substructural organization of the chromosome core (scaffold) in meiotic chromosomes of Trilophidia annulata. Genetical Research, Cambridge 64, 209215.Google Scholar
Zhao, J., Jin, S., Hao, S. & Xing, M. (1995). Studies on the mitotic chromosome scaffold of Allium sativum. Cell Research, 5, 155164.CrossRefGoogle Scholar