Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T12:00:46.642Z Has data issue: false hasContentIssue false

A model of extranuclear genomes and the substitution rate under within-generation selection

Published online by Cambridge University Press:  14 April 2009

Naoyuki Takahata
Affiliation:
Department of Zoology, NJ-15, University of Washington, Seattle, WA 98195, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A single locus model of extranuclear genomes is developed under the assumption of the complete action of within-generation drift which is caused by random transmission of multiple copy genomes during cell division in a generation. Within-generation drift segregates different copy genomes in a cell into different cells, resulting in homoplasmic cells. Under some conditions, the present model reduces to that for haploid nuclear genomes. A point overlooked in previous models is that the multiplicity also admits of the possibility of selection occurring within a cell or between cells in an individual (within-generation selection). If there is selection mediated by, for instance, differential proliferation of genomes, then a haploid model no longer explains the dynamics of extranuclear genomes. Rather a model analogous to biased gene conversion at a single locus (Nagylaki, 1983; Walsh, 1983) is more appropriate. An application of this model to either the fixation probability or substitution rate of new mutations shows that strictly maternal inheritance does not allow the fullest use of mutations, as it obscures the effect of within-generation selection. But if there is appreciable paternal contribution, within-generation selection could be a strong evolutionary force to which nuclear genomes are never exposed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijin, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R. & Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature 290, 457465.CrossRefGoogle ScholarPubMed
Beale, G. H. & Knowles, J. K. C. (1978). Extranuclear Genetics. London: Edward Arnold.Google Scholar
Bibb, M. J., Van Etten, R. A., Wright, C. T., Waberg, M. W. & Clayton, D. A. (1981). Sequence and gene organization of mouse mitochondial DNA. Cell 26, 167180.CrossRefGoogle Scholar
Birky, C. W. Jr,. (1978). Transmission genetics of mitochondria and chloroplasts. Annual Review of Genetics 12, 471512.CrossRefGoogle ScholarPubMed
Birky, C. W. Jr,. (1983). Relaxed cellular controls and organelle heredity. Science 222, 468475.CrossRefGoogle ScholarPubMed
Blanc, H., Wright, C. T., Bibb, M. J., Wallace, D. C. & Clayton, D. A. (1981). Mitochondrial DNA of chloramphenicol-resistant mouse cells contains a single nucleotide change in the region encoding the 3′ end of the large ribosomal RNA. Proceedings of the National Academy of Science, U.S.A. 78, 37893793.CrossRefGoogle ScholarPubMed
Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. (1982). Mitochondrial DNA sequences of primates: tempo and mode of evolution. Journal of Molecular Evolution 18, 225239.CrossRefGoogle ScholarPubMed
Chapman, R. W., Stephens, J. C., Lansman, R. A. & Avise, J. C. (1982). Models of mitochondrial DNA transmission genetics and evolution in higher eucaryotes. Genetical Research 40, 4157.CrossRefGoogle ScholarPubMed
Crow, J. F. & Kimura, M. (1970). An Introduction to Population Genetics Theory. New York, Evanston and London: Harper & Row.Google Scholar
Gillham, N. W. (1978). Organelle Heredity. New York: Raven Press.Google Scholar
Gillham, N. W., Boynton, J. E. & Lee, R. W. (1974). Segregation and recombination of non-mendelian genes in Chlamydomonas. Genetics 78, 439457.CrossRefGoogle ScholarPubMed
Kearsey, S. E. & Craig, I. W. (1981). Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance. Nature 290, 607608.CrossRefGoogle ScholarPubMed
Kimura, M. (1957). Some problems of stochastic processes in genetics. Annual Mathematical Statistics 28, 882901.CrossRefGoogle Scholar
Lansman, R. A., Avise, J. C. & Huettel, M. D. (1983). Critical experimental test of the possibility of ‘paternal leakage’ of mitochondial DNA. Proceedings of the National Academy of Science, U.S.A. 80, 19691971.CrossRefGoogle Scholar
Margulis, L. (1981). Symbiosis in Cell Evolution. San Francisco: W. H. Freeman.Google Scholar
Nagylaki, T. (1983). Evolution of a finite population under gene conversion. Proceedings of the National Academy of Science U.S.A. 80, 62786281.CrossRefGoogle ScholarPubMed
Nass, M. M. K. & Nass, S. (1963). Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions. Journal of Cell Biology 19, 593611.CrossRefGoogle ScholarPubMed
Rabinowitz, M. & Swift, H. (1970). Mitochondrial nucleic acids and their relation to the biogenesis of mitochondria. Physiological Reviews 50, 376427.CrossRefGoogle Scholar
Ris, H. & Plaut, W. (1962). Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. Journal of Cell Biology 13, 383391.CrossRefGoogle ScholarPubMed
Takahata, N. & Maruyama, T. (1981). A mathematical model of extranuclear genes and the genetic variability maintained in a finite population. Genetical Research 37, 291302.CrossRefGoogle Scholar
Takahata, N. (1983 a). Linkage disequilibrium of extranuclear genes under neutral mutations and random genetic drift. Theoretical Population Biology 24, 124.CrossRefGoogle Scholar
Takahata, N. (1983 b). Population genetics of extranuclear genomes under the neutral mutation hypothesis. Genetical Research 42, 235255.CrossRefGoogle Scholar
Takahata, N. & Slatkin, M. (1983). Evolutionary dynamics of extranulcear genes. Genetical Research 42, 257265.CrossRefGoogle Scholar
Takahata, N. & Slatkin, M. (1984). Mitochondrial gene flow. Proceedings of the National Academy of Science U.S.A. (In the Press.)CrossRefGoogle Scholar
Tilney-Basset, R. A. E. (1970). The control of plastid inheritance in pelargonium. Genetical Research 16, 4661.CrossRefGoogle Scholar
Thrailkill, K. M., Birky, C. W. Jr., Luckermann, G. & Wolf, K. (1980). Intracellular population genetics: evidence for random drift of mitochondrial allele frequencies in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genetics 96, 237262.CrossRefGoogle ScholarPubMed
Ursprung, H. & Schabtach, E. (1965). Fertilization in tunicate: loss of the paternal mitochondrion prior to sperm entry. Journal of Experimental Zoology 159, 379384.CrossRefGoogle ScholarPubMed
Wallace, D. C. (1982). Structure and evolution of organelle genomes. Microbiological Reviews 46, 208240.CrossRefGoogle ScholarPubMed
Walsh, J. B. (1983). Role of biased gene conversion in one-locus neutral theory and genome evolution. Genetics 105, 461468.CrossRefGoogle ScholarPubMed
Wright, S. (1931). Evolution in mendelian populations. Genetics 16, 97159.CrossRefGoogle ScholarPubMed