Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T16:41:14.125Z Has data issue: false hasContentIssue false

Mitochondrial inheritance in Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

Alex Coenen*
Affiliation:
Department of Genetics, Agricultural University, Dreyenlaan 2, 6703 HA Wageningen, The Netherlands
Jim H. Croft
Affiliation:
School of Biological Science, University of Birmingham, Birmingham, England
Marijke Slakhorst
Affiliation:
Department of Genetics, Agricultural University, Dreyenlaan 2, 6703 HA Wageningen, The Netherlands
Fons Debets
Affiliation:
Department of Genetics, Agricultural University, Dreyenlaan 2, 6703 HA Wageningen, The Netherlands
Rolf Hoekstra
Affiliation:
Department of Genetics, Agricultural University, Dreyenlaan 2, 6703 HA Wageningen, The Netherlands
*
*E-mail: Alex Coenen@[email protected], Fax: + 31.8370.83146.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mitochondrial chloramphenicol and oligomycin resistance mutations were used to investigate mitochondrial inheritance in A. nidulans. Mitochondrial RFLPs could not be used to distinguish between paternal and maternal mitochondria because none were detected in the 54 isolates investigated. Several thousand ascospores from each of 111 hybrid cleistothecia from 21 different crosses between 7 heterokaryon incompatible isolates were tested for biparental inheritance. All mitochondrial inheritance was strictly uniparental. Not one instance of paternal inheritance of mitochondria was observed. The implications of our results for the theory that uniparental inheritance evolved to avoid cytoplasmic conflictare discussed. Possible explanations for the maintenance of strict uniparental inheritance of mitochondria in an inbreeding homothallic organism are suggested. The chloramphenicol resistance marker was inherited preferentially to the oligomycin resistance marker probably due to the inhibited energy production of mitochondria with the oligomycin resistance mutation. The maternal parent was determined for 93 hybrid cleistothecia from 17 crosses between 7 different strains. Contraryto previous reports A. nidulans strains functioned as both maternal and paternal parent in most crosses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Alexopolous, C. J. & Mims, C. W. (1979). Introductory Mycology. New York: John Wiley & Sons.Google Scholar
Beatty, N. P., Smith, M. L. & Glass, N. L. (1994). Molecular characterization of mating-type loci in selected homothallic species of Neurospora, Gelasinospora and Anixiella. Mycological Research 98, 13091316.Google Scholar
Benjamin, C. R. (1955). Ascocarps of Aspergillus and Penicillium. Mycologia 47, 669687.Google Scholar
Burnett, J. H. (1976). Fundamentals of Mycology. Edward Arnold.Google Scholar
Coenen, A., Debets, F. & Hoekstra, R. (1994). Additive action of partial heterokaryon incompatibility (partialhet) genes in Aspergillus nidulans. Current Genetics 26, 223237.CrossRefGoogle ScholarPubMed
Cosmides, L. M. & Tooby, J. (1981). Cytoplasmic inheritance and intragenomic conflict. Journal of Theoretical Biology 89, 83129.CrossRefGoogle ScholarPubMed
Croft, J. H. (1985). Protoplast fusion and incompatibility in Aspergillus. In: Fungal protoplasts. (ed. Peberdy, J. F. and Ferenczy, L.). pp. 225240. New York & Basel: Marcel Dekker.Google Scholar
Croft, J. H., Dales, R. B. G., Turner, G. & Earl, A. (1979). The transfer of mitochondria between species of Aspergillus In: Advances in Protoplast research. (ed. Ferenczy, L. and Farkas, G. L.), pp. 8592. Pergamon Press.Google Scholar
Geiser, M. G., Arnold, M. L. & Timberlake, W. E. (1994). Sexual origins of British Aspergillus nidulans isolates. Proclamations of the National Academy of Science USA 91, 23492352.Google Scholar
Glass, N. L. & Smith, M. L. (1994). Structure and function of a mating-type gene from the homothallic species Neurospora africana. Molecular and General Genetics 244, 401409.Google Scholar
Grun, P. (1976). Cytoplasmic Genetics and Evolution. New York: Columbia University Press.Google Scholar
Gunatilleke, I. A. U. N., Scazzocchio, C. & Arst, H. N. (1975). Cytoplasmic and nuclear mutations to chloramphenicol resistance in Aspergillus nidulans. Molecular and General Genetics 137, 269276.Google Scholar
Hoekstra, R. F., (1990). Evolution of uniparental inheritance of cytoplasmic DNA. In Organizational Constraints on the Dynamics of Evolution. (ed. Smith, J. M. and Vida, G.). pp. 269278. Manchester & New York: Manchester University Press.Google Scholar
Hurst, L. D., (1994). Cytoplasmic genetics under inbreeding and outbreeding. Proceedings of the Royal Society London B 258, 287298.Google Scholar
Hurst, L. D., & Hamilton, W. D., (1992). Cytoplasmic fusion and the nature of sexes. Proceedings of the Royal Society of London 247, 189194.Google Scholar
Kuroiwa, T., (1985). Mechanism of maternal inheritance of chloroplast DNA: an active digestion hypothesis. Microbiological Science 2, 267270.Google ScholarPubMed
MacLannan, D. H., & Tzagoloff, A., (1968). Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry 7, 16031610.CrossRefGoogle Scholar
May, G., & Taylor, J. W., (1989). Independent transfer of mitochondrial plasmids in Neurospora crassa. Nature 339, 320322.Google Scholar
Meland, S., Johansen, S., Johansen, T., Haugli, K., & Haugli, F., (1991). Rapid disappearance of one parental mitochondrial genotype after isogamous mating in the myxomycete Physarum polycephalum. Current Genetics 19, 5560.Google Scholar
Nauta, M., & Hoekstra, R. F., (1992). Hermaphrodism and other reproductive strategies. Heredity 68, 537546.CrossRefGoogle ScholarPubMed
Piskur, J., (1994). Inheritance of the yeast mitochondrial genome. Plasmid 31, 229241.CrossRefGoogle ScholarPubMed
Pontecorvo, G., (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.CrossRefGoogle ScholarPubMed
Reboud, X., & Zeyl, C., (1994). Organelle inheritance in plants. Heredity 72, 132140.CrossRefGoogle Scholar
Rowlands, R. T., & Turner, G., (1973). Nuclear and extranuclear inheritance of oligomycin resistance in Aspergillus nidulans. Molecular and General Genetics 126, 201216.Google Scholar
Rowlands, R. T., & Turner, G., (1976). Maternal inheritance of extranuclear mitochondrial markers in Aspergillus nidulans. Genetical Research 28, 281290.CrossRefGoogle ScholarPubMed
Taylor, J. W., Smolich, B. D., & May, G., (1986). Evolution and mitochondrial DNA in Neurospora crassa. Evolution 40, 716739.Google Scholar
Varga, J., Kevei, F., Fekete, C., Coenen, A., Kozakiewicz, Z., & Croft, J. H., (1993). Restriction fragment length polymorphisms in the mitochondrial DNAs of the Aspergillus niger aggregate. Mycological Research 97, 12071212.Google Scholar
Yang, X., & Griffiths, J. F., (1993). Male transmission of linear plasmids and mitochondrial DNA in the fungus Neurospora. Genetics 134, 10551062.Google Scholar
Zonneveld, B. J. M., (1988). Morphology of initials and number of nuclei initiating cleistothecia in Aspergillus nidulans. Transactions of the British Mycological Society 90, 369373.CrossRefGoogle Scholar