Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T04:38:55.290Z Has data issue: false hasContentIssue false

A Method for the Selection of Deletion Mutations in the L-Proline Catabolism Gene Cluster of Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

Herbert N. Arst Jr*
Affiliation:
Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, England Department of Genetics, Ridley Building, The University, Newcastle upon Tyne NE1 7RU, England
Susan A. Jones
Affiliation:
Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, England
Christopher R. Bailey
Affiliation:
Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, England
*
* Address correspondence to this author (at Newcastle address).
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interest in the selection of mutations affecting L-proline catabolism in Aspergillus nidulans is heightened by the involvement of one of the very few examples of a cluster of functionally related genes in an eukaryote and by an increasing awareness of the biological phenomena in which proline and proline catabolism participate. The sasA-60 (semialdehyde sensitive) mutation in A. nidulans results in toxicity of catabolic precursors of L-glutamic γ-semialdehyde (or its internal Schiff base L-Δ1-pyrroline-5-carboxylate) and succinic semialdehyde, apparently without affecting the catabolic pathways concerned. As sasA-60 is unlinked to the prn gene cluster, specifying the gene products necessary for L-proline catabolism and as L-proline, a precursor of L-glutamic γ-semialdehyde, is highly toxic to sasA-60 strains, this forms the basis of a powerful positive selection technique for obtaining a number of types of prn mutations. Many of these prn mutations can be directly classified according to the gene product(s) affected on the basis of growth phenotype with respect to L-arginine and L-ornithine utilization, proline-dependent resistance to certain toxic amino acid analogues and effect on supplementation of proline auxotrophies. The availability of both a positive selection technique and an extensive nutritional screening system has enabled the identification of fourteen spontaneous deletion mutations, recognized as extending into the prnB gene, specifying the principal L-proline permease, and into at least one other prn gene. These deletion mutations have been partially characterized both genetically and biochemically. In particular their use has greatly facilitated fine-structure mapping of the prn cluster and aided studies of the regulation of prn gene expression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

Alderson, T. & Clark, A. M. (1966). Interlocus specificity for chemical mutagens in Aspergillus nidulans. Nature 210, 593595.CrossRefGoogle ScholarPubMed
Alderson, T. & Hartley, M. J. (1969). Specificity for spontaneous and induced forward mutation at several gene loci in Aspergillus nidulans. Mutation Research 8, 255264.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. (1976). Integrator gene in Aspergillus nidulans. Nature 262, 231234.Google ScholarPubMed
Arst, H. N. Jr. (1977 a). Some genetical aspects of ornithine metabolism in Aspergillus nidulans. Molecular and General Genetics 151, 105110.Google ScholarPubMed
Arst, H. N. Jr. (1977 b). The basis for an apparent auxotrophy for reduced sulphur metabolites in sF mutants of Aspergillus nidulans. Genetical Research 30, 207210.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr,. (1981). Aspects of the control of gene expression in fungi. In Genetics as a Tool in Microbiology. Society for General Microbiology Symposium 31 (ed. Glover, S. W. and Hopwood, D. A.), pp. 131160. Cambridge University Press.Google Scholar
Arst, H. N. Jr. & Bailey, C. R. (1977). The regulation of carbon metabolism in Aspergillus nidulans. In Genetics and Physiology of Aspergillus (ed. Smith, J. E. and Pateman, J. A.), pp. 131146. London: Academic Press.Google ScholarPubMed
Arst, H. N. Jr., Bailey, C. R. & Penfold, H. A. (1980 a). A possible rôle for acid phosphatase in γ-amino-n-butrate uptake in Aspergillus nidulans. Archives of Microbiology 125, 153158.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. & Cove, D. J. (1969). Methylammonium resistance in Aspergillus nidulans. Journal of Bacteriology 98, 12841293.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. & Cove, D. J. (1973). Nitrogen metabolite repression in Aspergillus nidulans. Molecular and General Genetics 126, 111141.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. & Macdonald, D. W. (1975). A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254, 2631.CrossRefGoogle ScholarPubMed
Arst, H. N. Jr. & Macdonald, D. W. (1978). Reduced expression of a distal gene of the prn gene cluster in deletion mutants of Aspergillus nidulans: genetic evidence for a dicistronic messenger in an eukaryote. Molecular and General Genetics 163, 1722.CrossRefGoogle Scholar
Arst, H. N. Jr., Macdonald, D. W. & Jones, S. A. (1980 b). Regulation of proline transport in Aspergillus nidulans. Journal of General Microbiology 116, 285294.Google Scholar
Arst, H. N. Jr., Parbtani, A. A. M. & Cove, D. J. (1975). A mutant of Aspergillus nidulans defective in NAD-linked glutamate dehydrogenase. Molecular and General Genetics 138, 165171.Google ScholarPubMed
Arst, H. N. Jr., Penfold, H. A. & Bailey, C. R. (1978). Lactam utilization in Aspergillus nidulans: evidence for a fourth gene under the control of the integrator gene intA. Molecular and General Genetics 166, 321327.CrossRefGoogle ScholarPubMed
Axelsen, N. H., Kroll, J. & Weeke, B. (ed.) (1973). A Manual of Quantitative Immunoelectro-phoresis: Methods and Applications. Olso: UniversitetsförlagetGoogle Scholar
Bailey, C. & Arst, H. N. Jr. (1975). Carbon catabolite repression in Aspergillus nidulans. European Journal of Biochemistry 51, 573577.CrossRefGoogle Scholar
Bailey, C. R., Arst, H. N. Jr. & Penfold, H. A. (1980). A third gene affecting GABA transaminase levels in Aspergillus nidulans. Genetical Research 36, 167180.CrossRefGoogle ScholarPubMed
Bailey, C. R., Penfold, H. A. & Arst, H. N. Jr. (1979). Cis-dominant regulatory mutations affecting the expression of GABA permease in Aspergillus nidulans. Molecular and General Genetics 169, 7983.CrossRefGoogle ScholarPubMed
Balboni, E. (1978). A proline shuttle in insect flight muscle. Biochemical and Biophysical Research Communications 85, 10901096.CrossRefGoogle ScholarPubMed
Bartnik, E. & Weglenski, P. (1974). Regulation of arginine catabolism in Aspergillus nidulans. Nature 250, 590592.CrossRefGoogle ScholarPubMed
Blake, R. L. (1972). Animal model for hyperprolinaemia: deficiency of mouse proline oxidase. Biochemical Journal 129, 987989.CrossRefGoogle ScholarPubMed
Brandriss, M. C. & Magasanik, B. (1980). Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. Journal of Bacteriology 143, 14031410.CrossRefGoogle ScholarPubMed
Clarke, H. G. M. & Freeman, T. (1966). A quantitative immuno-electrophoresis method (Laurell electrophoresis). In Protides of the Biological Fluids. Proceedings of the 14th Colloquium (ed. Peeters, H.), pp. 503509. Amsterdam: Elsevier.Google Scholar
Clutterbuck, A. J. (1974). Aspergillus nidulans. In Handbook of Genetics, vol. 1 (ed. King, R. C.), pp. 447510. New York: Plenum Press.Google Scholar
Cove, D. J. (1966). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochimica et Biophysica Acta 113, 5156.Google ScholarPubMed
Cove, D. J. (1976 a). Chlorate toxicity in Aspergillus nidulans. Studies of mutants altered in nitrate assimilation. Molecular and General Genetics 146, 147159.CrossRefGoogle ScholarPubMed
Cove, D. J. (1976 b). Chlorate toxicity in Aspergillus nidulans: the selection and characterization of chlorate resistant mutants. Heredity 36, 191203.CrossRefGoogle ScholarPubMed
Csonka, L. N. (1980). The role of L-proline in response to osmotic stress in Salmonella typhimurium: selection of mutants with increased osmotolerance as strains which over-produce L-proline. In Genetic Engineering of Osmoregulation. Impact on Plant Productivity for Food, Chemicals and Energy (ed. Rains, D. W., Vallentine, R. C. and Hollaender, A.), pp. 3552. New York: Plenum Press.Google Scholar
Dhavises, G. & Anagnostopoulos, G. D. (1979). Influence of amino acids and water activity on the growth of Escherichia coli B/r/1. Microbios Letters 7, 105115.Google Scholar
Grenson, M. & Hennaut, C. (1971). Mutation affecting activity of several distinct amino acid transport systems in Saccharomyces cerevisiae. Journal of Bacteriology 105, 477482.CrossRefGoogle ScholarPubMed
Hankinson, O. (1974). Mutants of the pentose phosphate pathway in Aspergillus nidulans. Journal of Bacteriology 117, 11211130.CrossRefGoogle ScholarPubMed
Harboe, N. & Ingild, A. (1973). Immunisation, isolation of immunoglobulins, estimation of antibody titre. In A Manual of Quantitative Immunoelectrophoresis: Methods and Applications (ed. Axelsen, N. H., Kroll, J. and Weeke, B.), pp. 161164. Oslo: Universitetsförlaget.Google Scholar
Ho, K. H. & Miller, J. J. (1978). Free proline content and sensitivity to dessication and heat during yeast sporulation and spore germination. Canadian Journal of Microbiology 24, 312320.CrossRefGoogle ScholarPubMed
Hynes, M. J. (1979). Fine-structure mapping of the acetamidase structural gene and its controlling region in Aspergillus nidulans. Genetics 91, 381392.CrossRefGoogle ScholarPubMed
Jones, S. A. (1980). L-proline catabolism in Aspergillus nidulans. Ph.D. thesis. University of Cambridge.Google Scholar
Jones, S. A., Arst, H. N. Jr. & Macdonald, D. W. (1981). Gene roles in the prn cluster of Aspergillus nidulans. Current Genetics 3, 4956.CrossRefGoogle ScholarPubMed
Kinghorn, J. R. & Pateman, J. A. (1975). Mutations which affect amino acid transport in Aspergillus nidulans. Journal of General Microbiology 86, 174184.CrossRefGoogle ScholarPubMed
Layne, E. (1957). Spectrophorometric and turbidimetric methods for measuring proteins. In Methods in Enzymology, vol. III (ed. Colowick, S. P. and Kaplan, N. O.), pp. 447454. New York: Academic Press.Google Scholar
Lewis, N. J. (1975). Immunological and biochemical studies on the genetic determination of xanthine dehydrogenase and nitrate reductase in Aspergillus nidulans. Ph.D. thesis, University of Cambridge.Google Scholar
Mccully, K. S. & Forbes, E. (1965). The use of p-fluorophenylalanine with ‘master strains’ of Aspergillus nidulans for assigning genes to linkage groups. Genetical Research 6, 352359.CrossRefGoogle ScholarPubMed
Macdonald, D. W., Arst, H. N. Jr. & Cove, D. J. (1974). The theonine dehydratase structural gene in Aspergillus nidulans. Biochimica et Biophysica Acta 362, 6065.CrossRefGoogle Scholar
Mackintosh, M. E. & Pritchard, R. H. (1963). The production and replica plating of microcolonies of Aspergillus nidulans. Genetical Research 4, 320322.CrossRefGoogle Scholar
Mcnamer, A. D. & Stewart, C. R. (1974). Nicotinamide adenine dinucleotide-dependent proline dehydrogenase in Chlorella. Plant Physiology 53, 440444.CrossRefGoogle ScholarPubMed
Measures, J. C. (1975). Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257, 398400.CrossRefGoogle ScholarPubMed
Meuris, P. (1969). Studies of mutants inhibited by their own metabolites in Saccharomyces cerevisiae. II. Genetic and enzymatic analysis of three classes of mutants. Genetics 63, 569580.Google ScholarPubMed
Meuris, P., Lacroute, F. & Slonimski, P. P. (1967). Étude systematique de mutants inhibés par leurs propres metabolites chez la levure Saccharomyces cerevisiae. I. Obtention et caracterisation des differentes classes de mutants. Genetics 56, 149161.CrossRefGoogle ScholarPubMed
Moore, P. D. (1975). Proline implicated in halophyte osmotic adjustment. Nature 253, 399400.CrossRefGoogle Scholar
Ong, T.-M. & De Serres, F. J. (1975). Mutation induction by difunctional alkylating agents in Neurospora crossa. Genetics 80, 475482.CrossRefGoogle Scholar
Page, M. M. (1971). Genetic and biochemical studies on the catabolism of amines and alcohols in Asperigillus nidulans. Ph.D. thesis, University of Cambridge.Google Scholar
Page, M. M. & Cove, D. J. (1972). Alcohol and amine catabolism in the fungus Aspergillus nidulans. Biochemical Journal 127, 17P.CrossRefGoogle ScholarPubMed
Payton, M., Mccullough, W. & Roberts, C. F. (1976). Agar as a carbon source and its effect on the utilization of other carbon sources by acetate non-utilizing (acu) mutants of Aspergillus nidulans. Journal of General Microbiology 94, 228233.Google ScholarPubMed
Pearson, D. J., Imbuga, M. O. & Hoek, J. B. (1979). Enzyme activities in flight and leg muscle of the dung beetle in relation to proline metabolism. Insect Biochemistry 9, 461466.CrossRefGoogle Scholar
Penninckx, M., Jaspers, C. & Wiame, J.-M. (1980). Glutathione metabolism in relation to the amino-acid permeation systems of the yeast Saccharomyces cerevisiae. Occurrence of γ-glutamyltranspeptidase: its regulation and the effects of permeation mutations on the enzyme cellular level. European Journal of Biochemistry 104, 119123.CrossRefGoogle Scholar
Phano, J. M., Downing, S. J. & Yeh, G. C. (1980). Linkage of the HMP pathway to ATP generation by the proline cycle. Biochemical and Biophysical Research Communications 93, 462470.CrossRefGoogle Scholar
Phang, J. M., Yeh, G. C. & Hagedorn, C. H. (1981). The intercellular proline cycle. Life Sciences 28, 5358.CrossRefGoogle ScholarPubMed
Piotrowska, M., Sawicki, M. & Weglenski, P. (1969). Mutants of the arginine-proline pathway in Aspergillus nidulans. Journal of General Microbiology 55, 301305.CrossRefGoogle ScholarPubMed
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advances in Genetics 5, 141238.CrossRefGoogle ScholarPubMed
Rains, D. W., Vallentine, R. C. & Hollaender, A. (ed.) (1980). Genetic Engineering of Osmoregulation. Impact on Plant Productivity for Food, Chemicals and Energy. New York: Plenum Press.CrossRefGoogle Scholar
Rand, K. N. & Arst, H. N. Jr. (1977). A mutation in Aspergillus nidulans which affects the regulation of nitrite reductase and is tightly linked to its structural gene. Molecular and General Genetics 155, 6775.CrossRefGoogle ScholarPubMed
Ratzkin, B. & Roth, J. (1978). Cluster of genes controlling proline degradation in Salmonella typhimurium. Journal of Bacteriology 133, 744754.CrossRefGoogle ScholarPubMed
Roon, R. J., Levy, J. S. & Larimore, F. (1977). Negative interactions between amino acid and methylamine/ammonia transport systems of Saccharomyces cerevisiae. Journal of Biological Chemistry 252, 35993604.CrossRefGoogle ScholarPubMed
Roon, R. J., Meyer, G. M. & Larimore, F. S. (1977). Evidence for a common component in kinetically distinct transport systems of Saccharomyces cerevisiae. Molecular and General Genetics 158, 185191.Google Scholar
Rosenberg, L. E. & Scriver, C. R. (1974). Disorders of amino acid metabolism. In Duncan's Diseases of Metabolism. Genetics and Metabolism, 7th ed. (ed. Bondy, P. K. and Rosenberg, L. E.), pp. 465654. Philadelphia: W. B. Saunders.Google Scholar
Schwartz, D. O. & Beckwith, J. R. (1969). Mutagens which cause deletions in E. coli. Genetics 61, 371376.Google Scholar
Sealy-Lewis, H. M., Scazzocchio, C. & Lee, S. (1978). A mutation defective in the xanthine alternative pathway of Aspergillus nidulans. Its use to investigate the specificity of uaY mediated induction. Molecular and General Genetics 164, 303308.CrossRefGoogle ScholarPubMed
Stewart, G. R. & Larher, F. (1980). Accumulation of amino acids and related compounds in relation to environmental stress. In The Biochemistry of Plants. Vol. 5. Amino Acids and Derivatives (ed. Miflin, B. J.), pp. 609635. New York: Academic Press.CrossRefGoogle Scholar
Tomsett, A. B. & Cove, D. J. (1979). Deletion mapping of the niiA niaD gene region of Aspergillus nidulans. Genetical Research 34, 1932.Google ScholarPubMed
Valle, D. L., Phang, J. M. & Goodman, S. I. (1974). Type 2 hyperprolinemia: absence of Δ1-pyrroline-S-carboxylic acid dehydrogenase activity. Science 185, 10531054.CrossRefGoogle ScholarPubMed
Weglenski, P. (1966). Genetical analysis of proline mutants and their suppressors in Aspergillus nidulans. Genetical Research 8, 311321.CrossRefGoogle ScholarPubMed
Williams, I. & Frank, L. (1975). Improved chemical synthesis and enzymatic assay of Dgr;1-pyrroline-5-carboxylic acid. Analytical Biochemistry 64, 8597.Google Scholar
Withers, L. A. & King, P. J. (1979). Proline: a novel cryoprotectant for the freeze preservation of cultured cells of Zea mays L. Plant Physiology 64, 675678.CrossRefGoogle ScholarPubMed