Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T06:37:23.443Z Has data issue: false hasContentIssue false

Meiotic imbalance in laboratory-produced hybrid males of Chorthippus parallelus parallelus and Chorthippus parallelus erythropus

Published online by Cambridge University Press:  14 April 2009

J. L. Bella*
Affiliation:
Departamento de Biología C-XV. Unidad de Genética, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
G. M. Hewitt
Affiliation:
School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
J. Gosálvez
Affiliation:
Departamento de Biología C-XV. Unidad de Genética, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The grasshopper Chorthippus parallelus has two quite distinct subspecies, which meet along the Pyrenees forming a hybrid zone. Using silver staining we show that on the French side Cp. parallelus has three nucleolar organizer regions, on the L2, L3 and X chromosomes, while on the Spanish side Cp. erythropus has only two NORs, on the L2 and L3. Laboratory F1 hybrid males show reciprocal differences in the expression of NORs. When a Cp. erythropus is female parent the male progeny show four active NORs in mitotic cells and two silver precipitates in meiotic cells, as expected. But when a Cp. parallelus female donates the X with a NOR, her male offspring have a variable disrupted nucleolar expression. Some NORs are not expressed and extra sites of cryptic rDNA are revealed. Meiosis is more disturbed in this latter F1 cross with higher levels of polyploidy, but both Fls show around 90% spermatid abnormality. Such variation in rDNA expression is also found in individuals collected from the hybrid zone, and the role of this disturbance in affecting fitness is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Barton, N. H. & Hewitt, G. M. (1989). Adaptation, speciation and hybrid zones. Nature 341, (6242), 497503.CrossRefGoogle ScholarPubMed
Butlin, R. K. & Hewitt, G. M. (1985 a). A hybrid zone between Chorthippus parallelus parallelus and Chorthippus parallelus erythropus (Orthoptera: Acrididae): morphological and electrophoretic characters. Biological Journal of the Linnean Society 26, 269285.CrossRefGoogle Scholar
Butlin, R. K. & Hewitt, G. M. (1985 b). A hybrid zone between Chorthippus parallelus parallelus and Chorthippus parallelus erythropus (Orthoptera: Acrididae): behavioural characters. Biological Journal of the Linnean Society 26, 287299.CrossRefGoogle Scholar
Butlin, R. K. & Hewitt, G. M. (1988). Genetics of behavioural and morphological differences between parapatric subspecies of Chorthippus parallelus (Orthoptera: Acrididae). Biological Journal of the Linnean Society 33, 233248.CrossRefGoogle Scholar
Dobzhansky, T. (1934). Studies on hybrid sterility. I. Spermatogenesis in pure and hybrid Drosophila pseudobscura. Zell Zellforsch 21, 169223.CrossRefGoogle Scholar
Dobzhansky, T. & Boche, D. R. (1933). Intersterile races of Drosophila pseudobscura. Biologische Zentralblatt 55, 314330.Google Scholar
Flavell, R. B. & Martini, G. (1982). The genetic control of nucleolus formation with special reference to common bread wheat. In The Nucleolus (ed. Jordan, E. G. and Cullis, C. A.), pp. 113128. Cambridge, U.K.: Cambridge University Press.Google Scholar
Gosálvez, J., López-Fernández, C., Bella, J. L., Butlin, R. K. & Hewitt, G. M. (1988). A hybrid zone between Chorthippus parallelus parallelus and Chorthippus parallelus erythropus (Orthoptera: Acrididae): chromosomal differentiation. Genome 30, 656663.CrossRefGoogle Scholar
Hewitt, G. M. (1988). Hybrid zones: natural laboratories for evolutionary studies. Trends in Ecology and Evolution 3, 158167.CrossRefGoogle ScholarPubMed
Hewitt, G. M. (1989). The subdivision of species by hybrid zones. In Speciation and its Consequences (ed. Otte, D. and Endler, J.). Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Hewitt, G. M., Butlin, R. K. & East, T. M. (1987). Testicular dysfunction in hybrids between parapatric subspecies of the grasshopper Chorthippus parallelus. Biological Journal of the Linnean Society 31, 2534.CrossRefGoogle Scholar
Hewitt, G. M., Gosálvez, J., López-Fernández, C., Ritchie, M. G., Nichols, R. A. & Butlin, R. K. (1988). Differences in the nucleolar organisers, sex chromosomes and Haldane's Rule in a hybrid zone. In Kew Chromosome Conference, vol. III (ed. Brandham, P. E.), pp. 109119. London: HMSO.Google Scholar
Lacadena, J. R., Cermeño, M. C., Orellana, J. & Santos, J. L. (1988). Nucleolar competition in Triticae. In Kew Chromosome Conference, vol. III (ed. Brandham, P. E.), pp. 151165. London: HMSO.Google Scholar
Miller, O. J., Miller, D. A., Dev, V. G., Tamtravahi, R. & Croce, C. M. (1976). Expression of human and suppression of mouse nucleolar organizer regions activity in mouse-human somatic cell hybrids. Proceedings of the Natural Academy of Sciences 73, 45314535.CrossRefGoogle Scholar
Ritchie, M. G., Butlin, R. K. & Hewitt, G. M. (1989). Assortative mating across a hybrid zone in Chorthippus parallelus (Orthoptera: Acrididae). Journal of Evolutionary Biology 2, 339352.CrossRefGoogle Scholar