Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-02T21:39:52.107Z Has data issue: false hasContentIssue false

Loci of radiation sensitivity in Bs strains of Escherichia coli*

Published online by Cambridge University Press:  14 April 2009

John Donch
Affiliation:
Palo Alto Medical Research Foundation, 860 Bryant Street, Palo Alto, California 94301
Joseph Greenberg
Affiliation:
Palo Alto Medical Research Foundation, 860 Bryant Street, Palo Alto, California 94301

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The genes responsible for u.v. sensitivity in ten sensitive mutants of E. coli strain B (Bs strains of R. Hill) have been mapped by transduction. The uvr genes of all the mutants able to reactivate u.v.-irradiated phage (HCR+), including Bs2, 4, 5, 6, 7, 9 and 10, were linked, 50–95%, with malB. The gene of Bs12 (HCR) was also linked to malB as is uvr A. The gene of Bs8 (HCR) was linked to gal, that of Bs3 (HCR) to his. Transduction of mal+ from a strain with uvr A, or a mal+ derivative of Bs12, to Bs2, 4, 5, 6, 7, 9 or 10, yielded about 30% u.v.-resistant transductants. A mal+ transduction with Bs2 mal+ as donor and other Bs strains as recipients yielded < 0·1% u.v.-resistant transductants. The malB-linked uvr genes of all mutants (except Bs3 and Bs8) were transducible with metA. The quasi-reciprocal crosses and three-point tests suggested the order of markers as metA malB uvr (HCR+) uvr (HCR). The sensitivity gene of Bs9 was exceptional in that it appeared to lie between metA and malB. The sensitivity gene of Bs11 could not be mapped because transductants to that strain were not possible, nor did it act as a recipient in sexual recombinations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

References

REFERENCES

Adams, M. H. (1959). Bacteriophages. New York: Interscience Publishers Inc.CrossRefGoogle Scholar
Arber, W. & Lataste-Dorolle, C. (1961). Erweiterung des Wirtsbereiches des Bakteriophagen λ auf Escherichia coli B. Pathol. Microbiol. 24, 10121018.Google Scholar
Boyce, R. P. & Howard-Flanders, P. (1964). Release of ultraviolet light-induced thymine dimers from DNA in E. coli K-12. Proc. natn. Acad. Sci. U.S.A. 51, 293300.CrossRefGoogle ScholarPubMed
Boyer, H. (1966). Conjugation in Escherichia coli. J. Bact. 91, 17671772.CrossRefGoogle ScholarPubMed
Cummings, D. J. & Mondale, L. (1967). Thymineless death in Escherichia coli: strain specificity. J. Bact. 93, 19171924.CrossRefGoogle ScholarPubMed
Demerec, M., Adelberg, E. A., Clark, A. J. & Hartman, P. E. (1966). A proposal for a uniform nomenclature in bacterial genetics. Genetics 54, 6176.CrossRefGoogle ScholarPubMed
Greenberg, J. (1964). A locus for radiation resistance in Escherichia coli. Genetics 49, 771778.CrossRefGoogle ScholarPubMed
Greenberg, J. (1967). Loci for radiation sensitivity in Escherichia coli strain B6−1. Genetics 55, 193201.CrossRefGoogle Scholar
Hill, R. F. & Simson, E. (1961). A study of radiosensitive and radio-resistant mutants of Escherichia coli strain B. J. gen. Microbiol. 24, 114.CrossRefGoogle Scholar
Hill, R. F. & Feiner, R. R. (1964). Further studies of ultraviolet-sensitive mutants of Escherichia coli strain B. J. gen. Microbiol. 35, 105114.CrossRefGoogle ScholarPubMed
Howard-Flanders, P. & Boyce, R. R. (1966). DNA repair and genetic recombination: studies on mutants of Escherichia coli defective in these processes. Radiat. Res. (Suppl.) 6, 156184.Google Scholar
Howard-Flanders, P., Boyce, R. P. & Theriot, L. (1966). Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 53, 11191136.CrossRefGoogle ScholarPubMed
Howard-FLanders, P., Simson, E. & Theriot, L. (1964). A locus that controls filament formation and sensitivity to radition in Escherichia coli K-12. Genetics 49, 237246.CrossRefGoogle Scholar
Lederberg, J. & Lederberg, E. M. (1952). Replica plating and indirect selection of bacterial mutants. J. Bact. 63, 399406.CrossRefGoogle ScholarPubMed
Lennox, E. S. (1955). Transduction of linked genetic characters of the host by bacteriophage Pl. Virology 1, 190206.CrossRefGoogle Scholar
Mattern, I. E., Zwenk, H. & Rörsch, A. (1966). The genetic constitution of the radiation-sensitive mutant Escherichia coli B8−1. Mutation Res. 3, 374380.CrossRefGoogle Scholar
Pettijohn, D. & Hanawalt, P. (1964). Evidence for repair-replication of ultraviolet damaged DNA in bacteria. J. molec. Biol. 9, 395410.CrossRefGoogle ScholarPubMed
Schwartz, M. (1966). Location of the maltose A and B loci on the genetic map of Escherichia coli. J. Bact. 92, 10831089.CrossRefGoogle Scholar
Setlow, R. B. & Carrier, W. L. (1964). The disappearance of thymine dimers from DNA: an error-correcting mechanism. Proc. natn. Acad. Sci. U.S.A. 51, 226231.CrossRefGoogle ScholarPubMed
Van De Putte, P., Westenbroek, C. & Rörsch, A. (1963). The relationship between genecontrolled radiation resistance and filament formation in Escherichia coli. Biochim. biophys. Acta 76, 247256.CrossRefGoogle ScholarPubMed
Witkin, E. M. (1946). Inherited differences in sensitivity to radiation in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 32, 5968.CrossRefGoogle ScholarPubMed
Witkin, E. M. (1947). Genetics of resistance to radiation in Escherichia coli. Genetics 32, 221248.CrossRefGoogle ScholarPubMed