Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T21:06:18.387Z Has data issue: false hasContentIssue false

Isolation of Bacillus subtilis transformation-deficient mutants and mapping of competence genes

Published online by Cambridge University Press:  14 April 2009

Giorgio Mastromei*
Affiliation:
Universitä degli studi di Firenze, Department of Animal Biology and Genetics, via Romana 17, 50125 Firenze, Italy
Claudia Barberio
Affiliation:
Universitä degli studi di Firenze, Department of Animal Biology and Genetics, via Romana 17, 50125 Firenze, Italy
Stefania Pistolesi
Affiliation:
Universitä degli studi di Firenze, Department of Animal Biology and Genetics, via Romana 17, 50125 Firenze, Italy
Mario Polsinelli
Affiliation:
Universitä degli studi di Firenze, Department of Animal Biology and Genetics, via Romana 17, 50125 Firenze, Italy
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have isolated and characterized 48 Bacillus subtilis competence-deficient mutants. The mutants, obtained by nitrososoguanidine mutagenesis or by insertional mutagenesis with transposon Tn917, had a reduced transformation frequency and a wild-type transduction frequency. The com mutations were mapped by PBS1 transduction and at least four new com genes have been identified. The mutants were also characterized for their capacity to bind and take up the transforming DNA.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Barberio, C., Coppolecchia, R., Mastromei, G. & Polsinelli, M. (1985). Competence proteins in Bacillus subtilis com mutants. Biochimica Biophysica Acta 842, 184188.Google Scholar
Davis, B. D. & Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60, 1728.CrossRefGoogle ScholarPubMed
Dedonder, R. A., Lepesant, J. A., Lepesant-Keizlarova, J., Billault, A., Steinmetz, M. & Kunst, F. (1977). Construction of a kit of reference strains for rapid genetic mapping in Bacillus subtilis. Applied and Environmental Microbiology 33, 989993.CrossRefGoogle ScholarPubMed
Dische, Z. (1955). Color reactions of nucleic acids components. In The Nucleic Acid, vol. I (ed. Chargraff, E. and Davison, J. N.), pp. 285304. Academic Press, Inc., New York.Google Scholar
Dooley, D. C., Hadden, C. T. & Nester, E. W. (1971). Macromolecular synthesis in Bacillus subtilis during development of the competent state. Journal of Bacteriology 108, 668679.Google Scholar
Dubnau, D. (1982). Genetic transformation in Bacillus subtilis. In The Molecular Biology of the Bacilli, pp. 147178. Academic Press, New York.Google Scholar
Eisenstadt, E., Lange, R. & Willecke, K. (1975). Competent Bacillus subtilis cultures synthesize a denatured DNA binding activity. Proceedings of the National Academy of Sciences, U.S.A. 72, 323327.CrossRefGoogle ScholarPubMed
Fani, R., Mastromei, G., Polsinelli, M. & Venema, G. (1984). Isolation and characterization of Bacillus subtilis mutants altered in competence. Journal of Bacteriology 157, 152157.CrossRefGoogle Scholar
Finn, C. W. Jr & Landman, O. E. (1985). Competence related proteins in the supernatant of competent cells of Bacillus subtilis. Molecular and General Genetics 198, 329335.CrossRefGoogle ScholarPubMed
Gryczan, T. J., Contente, S. & Dubnau, D. (1978). Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. Journal of Bacteriology 134, 318329.CrossRefGoogle ScholarPubMed
Hahn, J., Albano, M. & Dubnau, D. (1987). Isolation and characterization of Tn917 lac-generated competence mutants of Bacillus subtilis. Journal of Bacteriology 169, 31043109.CrossRefGoogle Scholar
Hoch, F. A., Barot, M. & Anagnostopoulos, C. (1967). Transformation and transduction in recombination defective mutants of Bacillus subtilis. Journal of Bacteriology 93, 19251937.Google Scholar
Lepesant-Kejzlarovà, J., Lepesant, J. A., Walle, J., Billault, A. & Dedonder, R. (1975). Revision of the linkage map of Bacillus subtilis 168: indications for circularity of the chromosome. Journal of Bacteriology 121, 823834.Google Scholar
Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. Journal of Molecular Biology 3, 208217.CrossRefGoogle Scholar
Mulder, J. A. & Venema, G. (1982). Isolation and partial characterization of Bacillus subtilis mutants impaired in DNA entry. Journal of Bacteriology 150, 260268.CrossRefGoogle ScholarPubMed
Nester, E. & Lederberg, J. (1961). Linkage of genetic units of B. subtilis in DNA transformation. Proceedings of the National Academy of Sciences, U.S. A 47, 5255.CrossRefGoogle Scholar
Smith, H. O., Danner, D. B. & Deich, R. A. (1981). Genetic transformation. Annual Review of Biochemistry 50, 4168.CrossRefGoogle ScholarPubMed
Smith, H., de Vos, W. & Bron, S. (1983). Transformation in Bacillus subtilis: properties of DNA binding deficient mutants. Journal of Bacteriology 153, 1220.Google Scholar
Smith, H., Wiersma, K., Venema, G. & Bron, S. (1985). Transformation in Bacillus subtilis: further characterization of a 75,000 dalton protein complex involved in binding and entry of donor DNA. Journal of Bacteriology 164, 201206.Google Scholar
Vosman, B., Kooistra, J., Olijve, J. & Venema, G. (1987). Cloning in Escherichia coli of the gene specifying the DNA entry nuclease of Bacillus subtilis. Gene 52, 175183.CrossRefGoogle ScholarPubMed
Young, F. E. & Spizizen, J. (1961). Physiological and genetic factors affecting transformation of Bacillus subtilis. Journal of Bacteriology 81, 823829.CrossRefGoogle ScholarPubMed
Youngman, P. J., Perkins, J. B. & Losick, R. (1983). Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proceedings of the National Academy of Sciences, U.S.A. 80, 23052309.CrossRefGoogle ScholarPubMed