Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T18:10:15.718Z Has data issue: false hasContentIssue false

Interaction between the plasmid R6K and Escherichia coli with defective DNA polymerase I

Published online by Cambridge University Press:  14 April 2009

D. J. Tweats
Affiliation:
Genetics Department, University College of Swansea, U.K., and the Microbiology Section, Department of Pharmaceutics, The School of Pharmacy, University of London, U.K.
J. T. Smith
Affiliation:
Genetics Department, University College of Swansea, U.K., and the Microbiology Section, Department of Pharmaceutics, The School of Pharmacy, University of London, U.K.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Initial experiments demonstrated that the plasmid R6K cannot be transferred to or maintained readily in the E. coli DNA polymerase I deficient strain JG138 polA1. Results with E. coli MM386 polA12 (R6K), which has a temperature sensitive polymerase I enzyme, showed cell division becomes abnormal when the polymerase I enzyme of the host bacteria is inactivated at the restrictive temperature. Under conditions of polymerase I deficiency, R6K replication, as measured by monitoring R-factor-mediated β-lactamase activity, also becomes abnormal with the loss of multiple R6K copies per cell and the apparent maintenance of a single R-factor copy per cell.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Ambrosio, R. E. (1977). Influence of rec and pol genes on the maintenance of a Proteus plasmid (P-lac) in Escherichia coli. Journal of Bacteriology 131, 689692.CrossRefGoogle ScholarPubMed
Clowes, R. C. & Rowley, D. (1954). Some observations on linkage effects in genetic recombination in Escherichia coli K12. Journal of General Microbiology 11, 250260.CrossRefGoogle Scholar
Dale, J. W. & Smith, J. T. (1971). Some relationships between R-factor and chromosomal β-lactamase in Gram-negative bacteria. Biochemistry Journal 123, 507512.CrossRefGoogle ScholarPubMed
Datta, N. & Kontomichalou, P. (1965). Penicillinase synthesis controlled by infectious R-factors in Enterobacteriaceae, Nature, London 208, 239241.CrossRefGoogle ScholarPubMed
Davis, B. D. & Mingioli, E. S. (1950). Mutants of Escherichia coli requiring methionine or vitamin B12. Journal of Bacteriology 60, 1728.CrossRefGoogle ScholarPubMed
Durkacz, B. W. & Sherratt, D. J. (1973). Segregation kinetics of colicinogenic factor ColE1 from bacterial population temperature-sensitive for DNA polymerase I. Molecular and General Genetics 121, 7175.CrossRefGoogle Scholar
Grindley, N. D. F. & Kelley, W. S. (1976). Effects of different alleles of the E. coli K12 polA gene on the replication of non-transferring plasmids. Molecular and General Genetics 143, 311318.CrossRefGoogle Scholar
Hedges, R. W. & Datta, N. (1972). R124, an fi + R-factor of a new compatibility class. Journal of General Microbiology 71, 403405.CrossRefGoogle ScholarPubMed
Hedges, R. W., Datta, N., Coetzee, J. N. & Dennison, S. (1973). R factors from Proteus morganii. Journal of General Microbiology 77, 249259.CrossRefGoogle ScholarPubMed
Hedges, R. W., Datta, N., Kontomichalou, P. & Smith, J. T. (1974). Molecular specificities of R-factor-determined beta-lactamases: Correlation with plasmid compatibility. Journal of Bacteriology 117, 5662.CrossRefGoogle ScholarPubMed
Helinski, D. R. (1973). Plasmid determined resistance to antibiotics: molecular properties of R-factors. Annual Review of Microbiology 27, 437470.CrossRefGoogle ScholarPubMed
Kingsbury, D. T. & Helinski, D. R. (1970). DNA polymerase as a requirement for the maintenance of the bacterial plasmid colicinogenic factor El. Biochemical and Biophysical Research Communications 41, 15381544.CrossRefGoogle Scholar
Konrad, E. B. & Lehman, I. R. (1974). A conditional lethal mutant of Escherichia coli K12 defective in the 5′-3′ exonuclease associated with DNA polymerase I. Proceedings of the National Academy of Science U.S.A., 71, 20482051.CrossRefGoogle ScholarPubMed
Kontomichalou, P., Mitani, M. & Clowes, R. C. (1970). Circular R-factor molecules controlling penicillinase synthesis replicating in Escherichia coli under either relaxed or stringent control Journal of Bacteriology 104, 3444.CrossRefGoogle ScholarPubMed
Kupersztoch, Y. M. & Helinski, D. R. (1973). A catenated DNA molecule as an intermediate in the replication of the transfer factor R6K in Escherichia coli. Biochemical and Biophysical Research Communications 54, 14511459.CrossRefGoogle ScholarPubMed
Lehman, I. R. & Chien, J. R. (1973). Persistance of Deoxyribonucleic acid polymerase I and its 5·3 exonuclease activity in polA mutants of Escherichia coli K12. Journal of Biological Chemistry 248, 77177723.CrossRefGoogle ScholarPubMed
Macrina, F. L., Weatherly, G. G. & Curtiss, R. III (1974). R6K plasmid replication. Influence of chromosomal genotype in minicell-producing strains of Escherichia coli. Journal of Bacteriology 120, 13871400.CrossRefGoogle ScholarPubMed
Meynell, E. & Datta, N. (1966). The relation of resistance transfer factors to the F factor (sex factor) of Escherichia coli K-12. Genetical Research, Cambridge 7, 134140.CrossRefGoogle Scholar
Moillo-Batt, A. & Richmond, M. H. (1976). The survival of RP1-1 in Escherichia coli and the influence of the rec and polA genes in the process. Genetical Research, Cambridge 28, 1526.CrossRefGoogle Scholar
Monk, & Kinross, J. (1972). Conditional lethality of recA and recB derivatives of a strain of Escherichia coli K-12 with a temperature-sensitive Deoxyribonucleic acid polymerase I. Journal of Bacteriology 109, 971978.CrossRefGoogle ScholarPubMed
Monk, M., Peacy, M. & Gross, J. D. (1971). Repair of damage induced by ultraviolet light in DNA polymerase I-deficient Escherichia coli cells. Journal of Molecular Biology 58, 623630.CrossRefGoogle Scholar
Setlow, P. & Kornberg, A. (1972). Deoxyribonucleic acid polymerase: Two distinct enzymes in one polypeptide II. A proteolytic fragment containing the 5′-3′ exonuclease function. Restoration of intact enzyme function from the two polypeptide fragments. The Journal of Biological Chemistry 247, 232240.CrossRefGoogle Scholar
Smith, J. T. (1969). R-factor gene expression in Gram-negative bacteria. Journal of General Microbiology 55, 109120.CrossRefGoogle ScholarPubMed
Smith, & Wyatt, J. M. (1974). Relation of R-factor and chromosomal β-lactamase with the periplasmic space. Journal of Bacteriology 117, 931939.CrossRefGoogle ScholarPubMed
Tait, R. C. & Smith, D. W. (1974). Roles for E. coli DNA polymerases I, II and III in DNA replication. Nature, London 249, 116119.CrossRefGoogle Scholar
Taylor, A. L. & Trotter, C. S. (1972). Linkage map of Escherichia coli strain K–12. Bacteriological Reviews 36, 504524.CrossRefGoogle ScholarPubMed
Terawaki, Y., Kakizawa, Y., Takayasu, H. & Yoshikawa, M. (1968). Temperature sensitivity of cell growth in Escherichia coli associated with the temperature sensitive R (Km) factor. Nature, London 219, 284285.CrossRefGoogle ScholarPubMed
Thompson, R. H. S. (1962). Classification and nomenclature of enzymes and coenzymes. Nature, London 193, 12271231.CrossRefGoogle ScholarPubMed
Tweats, D. J. (1975). Genetic interactions between R-factors and their bacterial hosts. PhD thesis, University of London.Google Scholar
Tweats, D. J., Pinney, R. J. & Smith, J. T. (1974). R-factor-mediated nuclease activity involved in thymineless elimination. Journal of Bacteriology 118, 790795.CrossRefGoogle ScholarPubMed
Tweats, D. J. & Smith, J. T. (1975). R. factor replication in an E. coli host with defective DNA polymerase I. Journal of Pharmacy and Pharmacology 27, 46p.Google Scholar
Waddell, W. J. (1956). A simple ultraviolet sepectrophotometric method for the determination of protein. Journal of Laboratory Clinical Medicine 48, 311314.Google ScholarPubMed