Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T07:12:03.402Z Has data issue: false hasContentIssue false

Inheritance of T-associated sex reversal in mice

Published online by Cambridge University Press:  14 April 2009

Linda L. Washburn
Affiliation:
The Jackson Laboratory, Bar Harbor, Maine 04609, USA
Barbara K. Lee
Affiliation:
The Jackson Laboratory, Bar Harbor, Maine 04609, USA
Eva M. Eicher
Affiliation:
The Jackson Laboratory, Bar Harbor, Maine 04609, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We previously identified a primary sex-determining locus, Tas, on mouse Chr 17 that causes ovarian tissue development in C57BL/6J Thp/ + and Torl/ + individuals if the AKR/J Y chromosome is present. We hypothesized that Tas is located within the region of Chr 17 deleted by Thp and Torl and that C57BL/6J carries a diagnostic Tas allele, based on the observation that ovarian tissue develops in XY mice when Thp is on a C57BL/6J inbred strain background, whereas normal testicular development occurs when Thp is on a C3H/HeSnJ inbred strain background. To test this hypothesis, we mated (C57BL/6J × C3H/HeSnJ)F1 females to C57BL/6J Thp/ + hermaphrodites. As expected, half of the XY Thp /+ offspring developed ovarian and testicular tissue while half developed exclusively testicular tissue. Unexpectedly, the inheritance of selected Chr 17 molecular loci was independent of gonadal development, as half of the male and hermaphroditic offspring inherited C3H/HeSnJ-derived Chr 17 loci and half inherited C57BL/6J-derived Chr 17 loci. We conclude that for ovarian tissue to develop in an XY Thp/ + or XY Tort/ + individual (1) Tas must be present in a hemizygous state, which is accomplished by heterozygosity for the Thp or Tort deletions; (2) the AKR/J-derived Y chromosome must be present; and (3) an additional locus involved in primary sex determination must be present in a homozygous C57BL/6J state. This newly identified gene may be one of the previously defined loci, tda-1 or tda-2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Alton, A., Silver, L. M., Artzt, K. & Bennett, D. (1980). Genetic relationship of trans interacting factors at the T/t complex: a molecular analysis. Nature 288, 368370.CrossRefGoogle Scholar
Babiarz, B. S., Donovan, M. J. & Hathaway, H. J. (1988). The developmental pathology of maternally derived T hp fetuses. Teratology 37, 353364.CrossRefGoogle ScholarPubMed
Bennett, D. (1975). The T-locus of the mouse. Cell 6, 441454.CrossRefGoogle Scholar
Cattanach, B. M. (1987). Sex-reversed mice and sex determination. Annals of the New York Academy of Sciences 513, 2739.CrossRefGoogle ScholarPubMed
Dickie, M. M. (1965). Mouse News Letter 32, 4344.Google Scholar
Eicher, E. M. (1988). Autosomal genes involved in mammalian primary sex determination. Transactions B, Royal Society 322, 109118.Google ScholarPubMed
Eicher, E. M., Beamer, W. G., Washburn, L. L. & Whitten, W. K. (1980). A cytogenetic investigation of inherited true hermaphroditism in BALB/cWt mice. Cytogenetics and Cell Genetics 28, 104–15.CrossRefGoogle ScholarPubMed
Eicher, E. M. & Washburn, L. L. (1978). Assignment of genes to regions of mouse chromosomes. Proceedings of the National Academy of Sciences USA 75, 946950.CrossRefGoogle ScholarPubMed
Eicher, E. M. & Washburn, L. L. (1983). Inherited sex reversal in mice: identification of a new primary sex-determining gene. Journal of Experimental Zoology 228, 297304.CrossRefGoogle ScholarPubMed
Eicher, E. M. & Washburn, L. L. (1986). Genetic control of sex determination in mice. Annual Review of Genetics 20, 327360.CrossRefGoogle ScholarPubMed
Eicher, E. M., Washburn, L. L., Whitney, J. B. III & Morrow, K. E. (1982). Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 217, 535537.CrossRefGoogle ScholarPubMed
Erickson, R. P., Lewis, S. E. & Slusser, K. S. (1978). Deletion mapping of the t complex of chromosome 17 of the mouse. Nature 274, 163164.CrossRefGoogle Scholar
Ferguson-Smith, M. A. (1988). Genes on the X and Y chromosome controlling sex: genetic sex is a matter of quantity. British Medical Journal 297, 635636.CrossRefGoogle Scholar
Fox, H. S., Martin, G. R., Lyon, M. F., Herrmann, B., Frischauf, A.-M., Lehrach, H. & Silver, L. M. (1985). Molecular probes define different regions of the mouse t complex. Cell 40, 6369.CrossRefGoogle ScholarPubMed
German, J. (1988). Gonadal dimorphism explained as a dosage effect of a locus on the sex chromosomes, the gonad-differentiation locus (GDL). American Journal of Human Genetics 42, 414421.Google ScholarPubMed
Goodfellow, P. N. & Darling, S. M. (1988). Genetics of sex determination in man and mouse. Development 102, 251258.CrossRefGoogle ScholarPubMed
Herrmann, B. G., Barlow, D. P. & Lehrach, H. (1987). A large inverted duplication allows homologous recombination between chromosomes heterozygous for the proximal t complex inversion. Cell 48, 813825.CrossRefGoogle ScholarPubMed
Herrmann, B., Búcan, M., Mains, P. E., Frischauf, A.-M., Silver, L. M. & Lehrach, H. (1986). Genetic analysis of the proximal portion of the t complex: evidence for a second inversion within the t haplotypes. Cell 44, 469476.CrossRefGoogle Scholar
Herrmann, B. G., Labeit, S., Poustka, A., King, T. R. & Lehrach, H. (1990). Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617622.CrossRefGoogle Scholar
Jenkins, N. A., Copeland, N. G., Taylor, B. A. & Lee, B. K. (1982). Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. Journal of Virology 43, 2636.CrossRefGoogle ScholarPubMed
Johnson, D. R. (1974). Hairpin-tail: a case of post-reductional gene action in the mouse egg? Genetics 76, 795805.CrossRefGoogle ScholarPubMed
Johnson, D. R. (1975). Further observations on the hairpin-tail (Thp) mutation in the mouse. Genetical Research 24, 207213.CrossRefGoogle Scholar
King, T. R., Dove, W. F., Herrmann, B. G., Moser, A. R. & Shedlovsky, A. (1989). Mapping to molecular resolution in the T to H-2 region of the mouse genome with a nested set of meiotic recombinants. Proceedings of the National Academy of Sciences USA 86, 222226.CrossRefGoogle Scholar
Leder, A. D., Swan, F., Ruddle, F., D'Eustachio, P. & Leder, P. (1981). Dispersion of the α-like globin genes of the mouse to three different chromosomes. Nature 293, 196200.CrossRefGoogle ScholarPubMed
Mann, E. A., Silver, L. M. & Elliott, R. W. (1986). Genetic analysis of a mouse t complex locus that is homologous to a kidney cDNA clone. Genetics 114, 9931006.CrossRefGoogle Scholar
Ohno, S. (1967). Sex chromosomes and sex-linked genes. In Monographs on Endocrinology Vol. 1 (ed. Labhart, A., Mann, A. T., Samuels, L. T. & Zander, J.), pp. 1192. Springer-Verlag, New York.Google Scholar
Page, D. C., Mosher, R., Simpson, E. M., Fisher, E. M. C., Mardon, G., Pollack, J., McGillivray, B., de la Chapelle, A. & Brown, L. G. (1987). The sex-determining region of the human Y chromosome encodes a finger protein. Cell 51, 10911104.CrossRefGoogle ScholarPubMed
Reed, K. C. & Mann, D. A. (1985). Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Research 13, 72077221.CrossRefGoogle ScholarPubMed
Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. (1977). Labeling deoxyribonucleic acid to high specific - activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113, 237251.CrossRefGoogle ScholarPubMed
Sarvetnick, N., Fox, H. S., Mann, E. A., Mains, P. E., Elliott, R. W. & Silver, L. M. (1986). Nonhomologous pairing in mouse t haplotype heterozygotes can produce recombinant chromosomes with adjacent duplications and deletions. Genetics 113, 723734.CrossRefGoogle Scholar
Silver, L. M., Artzt, K. & Bennett, D. (1979). A major testicular cell protein specified by a mouse T/t complex gene. Cell 17, 275284.CrossRefGoogle Scholar
Silver, L. M. (1985). Mouse t haplotypes. Annual Review of Genetics 19, 11791208.CrossRefGoogle ScholarPubMed
Silver, L. M., Lukralle, D. & Garrels, J. I. (1983). T ort is a novel, variant form of mouse chromosome 17 with a deletion in a partial t haplotype. Nature 301, 422424.CrossRefGoogle Scholar
Washburn, L. L. & Eicher, E. M. (1983). Sex reversal in XY mice caused by dominant mutation on chromosome 17. Nature 303, 338340.CrossRefGoogle ScholarPubMed
Washburn, L. L. & Eicher, E. M. (1989). Normal testis determination in the mouse depends on genetic interaction of a locus on chromosome 17 and the Y chromosome. Genetics 123, 173179.CrossRefGoogle ScholarPubMed
Willison, K. R., Dudley, K. & Potter, J. (1986). Molecular cloning and sequence analysis of a haploid expressed gene product encoding t complex polypeptide 1. Cell 44, 727738.CrossRefGoogle ScholarPubMed
Winking, H. & Silver, L. M. (1984). Characterization of a recombinant mouse t haplotype that expresses a dominant lethal maternal effect. Genetics 108, 10131020.CrossRefGoogle ScholarPubMed