Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T02:02:51.442Z Has data issue: false hasContentIssue false

The influence of the Robertsonian translocation Rb(X.2)2Ad on anaphase I non-disjunction in male laboratory mice

Published online by Cambridge University Press:  14 April 2009

I.-D. Adler
Affiliation:
Institut für Säugetiergenetik, Gesellschaft für Strahlen- und Umweltforschung, D-8042 Neuherberg
R. Johannisson
Affiliation:
Institut für Pathologie, Medizinische Universität zu Lübeck, D-2400 Lübeck, Federal Republic of Germany
H. Winking
Affiliation:
Institut für Biologie, Medizinische Universität zu Lübeck, D-2400 Lübeck, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Robertsonian translocation in the mouse between the X chromosome and chromosome 2 is described. The male and female carriers of the Rb(X.2)2Ad were fertile. A homozygous/hemizygous line was maintained. The influence of the X-autosomal Robertsonian translocation on anaphase I non-disjunction in male mice was studied by chromosome counts in cells at metaphase II of meoisis and by assessment of aneuploid progeny. The results conclusively show that the inclusion of Rb2Ad in the male genome induces non-disjunction at the first meoitic division. In second metaphase cells the frequency of sex-chromosomal aneuploidy was 10·8%, and secondary spermatocytes containing two or no sex chromosome were equally frequent. The Rb2Ad males sired 3·9% sex-chromosome aneuploid progeny. The difference in aneuploidy frequencies in the germ cells and among the progeny suggests that the viability of XO and XXY individuals is reduced. The pairing configurations of chromosomes 2, Rb2Ad and Y were studied during meiotic prophase by light and electron microscopy. Trivalent pairing was seen in all well spread nuclei. Complete pairing of the acrocentric autosome 2 with the corresponding segment of the Rb2Ad chromosome was only seen in 3·2% of the cells analysed in the electron microscope. The pairing between the X and the Y chromosome in the Rb2Ad males corresponded to that in males with normal karyotype. Reasons for sex-chromosomal non-disjunction despite the normal pairing pattern between the sex chromosomes may be seen in the terminal chiasma location coupled with the asynchronous separation of the sex chromosomes and the autosomes. The Rb2Ad chromosome can be useful for studies of X inactivation, as a marker for parental derivation of the X chromosome and for mapping loci by in situ hybridization.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Adler, I.-D. (1984). Cytogenetic tests in mammals. In Mutagenicity Testing: A Practical Approach (ed. Venitt, S. and Parry, J. M.), pp. 275306. Oxford, Washington, D.C.: IRL Press.Google Scholar
Adler, I.-D. & Neuhäuser-Klaus, A. (1987). Seventeen stocks of mice with reciprocal or Robertsonian translocations. Mouse News Letter 77, 139142.Google Scholar
Adler, I.-D., Schmöller, R., Nether, B. & Johannisson, R. (1987). A Robertsonian translocation involving the X-chromosome of the mouse. Genetical Research 49, 249.Google Scholar
Adolph, S. & Klein, J. (1983). Genetic variation of wild mouse populations in southern Germany. Genetical Research 41, 117134.CrossRefGoogle ScholarPubMed
Arroyo Nombela, J. J. & Rodriguez Murcia, C. (1977). Spontaneous double Robertsonian translocations Rb(2.3) and Rb(X.3) in the mouse. Cytogenetics and Cell Genetics 19, 227230.CrossRefGoogle Scholar
Ashley, T. (1983). Nonhomologous synapsis of the sex chromosomes in the heteromorphic bivalents of two X-7 translocations in male mice: R5 and R6. Chromosoma 88, 178183.CrossRefGoogle ScholarPubMed
Baker, B. S. & Lindsley, D. L. (1982). The genetic control of sex determination and male fertility in Drosophila melanogaster. In Proceedings of the Serono Clinical Colloquia on Reproduction. 3. Genetic Control of Gamete Production and Function (ed. Crosignani, P. G. and Rubin, B. L.), pp. 153170. London: Academic Press / Grune and Stratton.Google Scholar
Baranov, V. S. (1983). Chromosomal control of early embryonic development in mice. I. Experiments on embryos with autosomal monosomy. Genetica 61, 165177.CrossRefGoogle Scholar
Boer, P. de, Searle, A. G., Hoeven, F. A. van der, Rooij, D. G. de & Beechey, C. V. (1986). Male pachytene pairing in single and double translocation heterozygotes and spermatogenic impairment in the mouse. Chromosoma 93, 326336.CrossRefGoogle ScholarPubMed
Brook, J. D. (1983). X-chromosome segregation, maternal age and aneuploidy in the XO mouse. Genetical Research 41, 8595.CrossRefGoogle ScholarPubMed
Burgoyne, P. S. & Baker, T. C. (1984). Meiotic pairing and gametogenic failure. In Controlling Events in Meiosis (ed. Evans, C. W. and Dickson, H. G.), 38th Symposium of SFEB, pp. 349362. Company of Biologists, Cambridge.Google Scholar
Capanna, E., Gropp, A., Winking, H., Noak, G. & Civitelli, M.-V. (1976). Robertsonian metacentrics in the mouse. Chromosoma 58, 341353.CrossRefGoogle ScholarPubMed
Cattanach, B. M. & Moseley, H. (1973). Non-disjunction and reduced fertility caused by the tabacco mouse metacentric chromosomes. Cytogenetics and Cell Genetics 12, 264287.CrossRefGoogle Scholar
Evans, E. P., Breckon, G. & Ford, C. E. (1964). An air-drying method for meiotic preparations for mammalian testes. Cytogenetics 33, 289294.CrossRefGoogle Scholar
Evans, E. P., Lyon, M. F. & Daglish, M. (1967). A mouse giving a metacentric marker chromosome. Cytogenetics 6, 105119.CrossRefGoogle ScholarPubMed
Evans, E. P., Burtenshaw, M. D. & Ford, C. E. (1972). Chromosomes of mouse embryos and newborn young: preparations from membranes and tail tips. Stain Technology 47, 229234.CrossRefGoogle ScholarPubMed
Forejt, J. & Gregorova, S. (1977). Meitoic studies of translocations causing male sterility in the mouse. I. Autosomal reciprocal translocations. Cytogenetics and Cell Genetics 19, 159179.CrossRefGoogle Scholar
Gallimore, P. H. & Richardson, C. R. (1973). An improved banding technique exemplified in the karyotype analysis of two strains of rats. Chromosoma 41, 259263.CrossRefGoogle Scholar
Gropp, A., Tettenborn, U. & Lehmann, E. von (1970). Chromosomenvariationen vom Robertson'schen Typus bei der Tabakmaus M. poschiavius und ihren Hybriden mit der Laboratoriumsmaus. Cytogenetics 9, 923.CrossRefGoogle Scholar
Gropp, A. & Winking, H. (1981). Robertsonian translocations: cytology, meiosis, segregation patterns and biological consequences of heterozygosity. Symposium of the Zoological Society London 47, 141181.Google Scholar
Gropp, A., Putz, B. & Zimmerman, U. (1976). Autosomal monosomy and trisomy causing developmental failure. Current Topics of Pathology 62, 177192.CrossRefGoogle ScholarPubMed
Harris, M. J., Wallace, M. E. & Evan, E. P. (1986). Aneuploidy in the embryonic progeny of females heterozygous for the Robertsonian chromosome (9.12) in genetically wild Peru-Coppock mice (Mus musculus). Journal of Reproduction and Fertility 76, 193203.CrossRefGoogle ScholarPubMed
Johannisson, R., Gropp, A., Winking, H., Coerdt, W., Rehder, H. & Schwinger, E. (1983). Down's syndrome in the male. Reproductive pathology and meiotic studies. Human Genetics 63, 132138.CrossRefGoogle ScholarPubMed
Johannisson, R. (1984). Methoden der Chromosomen-spreitung zur Darstellung synaptonemaler Komplexe in der meiotischen Prophase von Säugern. GIT Fachzeitschrift für das Laboratorium 28, 68675.Google Scholar
Johannisson, R., Löhrs, U., Wolff, H. H. & Schwinger, E. (1987). Two different XY-quadrivalent associations and impairment of fertility in men. Cytogenetics and Cell Genetics 45, 222230.CrossRefGoogle ScholarPubMed
Léonard, A., Deknudt, G. (1967). A new marker for chromosome studies in the mouse. Nature 214, 504505.CrossRefGoogle ScholarPubMed
Lifschytz, E. & Lindsley, D. L. (1972). The role of X-chromosome inactivation during spermatogenesis. Proceedings of the National Academy of Science, USA 69, 182186.CrossRefGoogle ScholarPubMed
Ratomponirina, C., Couturier, J., Gabriel-Robez, O., Rumpler, Y., Dutrillaux, B., Croquette, M., Rabache, Q. & Leduc, M. (1985). Aberrations of the synaptonemal complexes in a male 46, XY, −14, + der (14)t(Y;14). Annals of Genetics 28, 214218.Google Scholar
Rosenmann, A., Wahrman, J., Richler, C., Voss, R., Persitz, A. & Goldman, B. (1985). Meiotic association between the XY chromosomes and unpaired autosomal elements as a cause of human male sterility. Cytogenetics and Cell Genetics 39, 1929.CrossRefGoogle ScholarPubMed
Russell, L. B. & Chu, E. H. Y. (1961). An XXY male in the mouse. Proceedings of the National Academy of Science, USA 47, 571575.CrossRefGoogle ScholarPubMed
Russell, L. B. (1976). Numerical sex-chromosome anomalies in mammals: their spontaneous occurrence and use in mutagenesis studies. In Chemical Mutagens. Principles and Methods of their Detection, vol. 4 (ed. Hollaender, A.), pp. 5591. New York, London: Plenum Press.CrossRefGoogle Scholar
Sachs, L. (1974). Angewandte Statistik. Berlin: Springer.CrossRefGoogle Scholar
Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research 75, 304306.CrossRefGoogle ScholarPubMed
Viguie, F., Romani, F. & Dadoune, J. P. (1982). Male infertility in a case of (Y;6) balanced reciprocal translocation. Mitotic and meiotic study. Human Genetics 62, 255277.CrossRefGoogle Scholar
Weber, E. (1967). Mathematische Grundlagen der Genetik, Jena: G. Fischer.CrossRefGoogle Scholar
Winking, H., Dulic, B. & Bulfield, G. (1988). Robertsonian karyotype variation in the European house mouse, M. musculus. Survey of present knowledge and new observations. Zeitschrift für Säugetierkunde 53, 148161.Google Scholar