Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T18:04:41.831Z Has data issue: false hasContentIssue false

Identification of two genes controlling kasugamycin resistance in the filamentous fungus Podospora anserina

Published online by Cambridge University Press:  14 April 2009

An Kieu-Ngoc
Affiliation:
Laboraloires de Génétique (UA 86 au CNRS)Université de Paris-Sud, Bâtiment 400 91405 ORSAY Cedex – France
Evelyne Coppin-Raynal*
Affiliation:
Laboraloires de Génétique (UA 86 au CNRS)Université de Paris-Sud, Bâtiment 400 91405 ORSAY Cedex – France
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have investigated the effect of the ribosome-targeted antibiotic kasugamycin (ksg) in Podospora anserina. While ksg inhibits both growth and sporulation, it has a stronger inhibitory effect on the sporulation process. It was previously reported that sporulation of Podospora could be impaired when ribosomes translate with a too high accuracy, and since ksg was demonstrated to increase the ribosomal accuracy in E. coli, we wondered whether it would act similarly in Podospora. As a first approach we have isolated two mutations at different loci, Ks1 and Ks2, that increase the resistance to ksg at the level of both growth and sporulation. Interestingly Ks1−1 also confers a decreased resistance to paromomycin, which is a mistranslation inducer. Characterization of Ks1−1 and Ks2−1 mutants suggests that they could be ribosomal mutants.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Belcour, L. (1975). Cytoplasmic mutations isolated from protoplasts of Podospora anserina. Genetical Research 25. 155161.CrossRefGoogle ScholarPubMed
Brygoo, Y. & Debuchy, R. (1985). Transformation by integration in Podospora anserina. I Methodology and phenomenology. Molecular and General Genetics 200, 128131.CrossRefGoogle Scholar
Coppin-Raynal, E. (1981). Ribosomal suppressors and antisuppressors in Podospora anserina: altered susceptibility to paromomycin and relationship between genetic and phenotypic suppression. Biochemical Genetics 19, 729740.CrossRefGoogle ScholarPubMed
Coppin-Raynal, E. (1977). Ribosomal suppressors and antisuppressors in Podospora anserina: resistance to cycloheximide. Journal of Bacteriology 131, 876883.CrossRefGoogle ScholarPubMed
Dequard-Chablat, M., Coppin-Raynal, E., Picard-Bennoun, M., Madjar, J. (1986). At least seven ribosomal proteins are involved in the control of translational accuracy in a eukaryotic organism. Journal of Molecular Biology 190, 167175.CrossRefGoogle Scholar
Dequard-Chablat, M. & Coppin-Raynal, E. (1984). Increase of translational fidelity blocks sporulation in the fungus Podospora anserina. Molecular and General Genetics 195, 294299.CrossRefGoogle Scholar
Esser, K. (1974). In Handbook of Genetics (ed. King, R. C.), vol. 1, pp. 531551. New York and London: Plenum Press.Google Scholar
Gorini, L. (1974). Streptomycin and the misreading of the genetic code. In Ribosomes (ed. Nomura, N., Tissieres, A. and Lengyel, P.), pp. 791803. Cold Spring Harbor Laboratory, New York.Google Scholar
Helser, T. L., Davies, J. E. & Dahlberg, J. E. (1971). Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nature New Biology 233, 1214.CrossRefGoogle ScholarPubMed
Hirashima, A., Childs, G. & Inouye, M. (1973). Differential inhibitory effects of antibiotics on the biosynthesis of envelope proteins of E. coli. Journal of Molecular Biology 79, 373389.CrossRefGoogle Scholar
Kurland, C. G. (1987). Strategies for efficiency and accuracy in gene expression. 2. Growth optimized ribosomes. Trends in Biochemical Sciences 12, 169171.CrossRefGoogle Scholar
Noller, H. F., Asire, M., Barta, A., Douthw, S., Goldstein, T., Gutell, R. R., Moazed, D., Normaly, J., Prince, J. B., Stern, S., Triman, K., Turner, S., Van Stolk, B., Wheaton, V., Weiser, B. & Woese, G. R. (1986). Studies on the structure and function of ribosomal RNA. In Structure, Function and Genetics of Ribosomes (ed. Hardesty, B. and Kramer, G.), pp. 143163. New York: Springer Verlag.CrossRefGoogle Scholar
Palmer, E. & Wilhelm, J. M. (1978). Mistranslation in a eukaryotic organism. Cell 13, 392–334.CrossRefGoogle Scholar
Picard-Bennoun, M. (1982). Does translational ambiguity increase during cell differentiation? FEBS Letters 149, 167170.CrossRefGoogle ScholarPubMed
Picard-Bennoun, M., Coppin-Raynal, E. & Dequard-Chablat, M. (1983). Translational ambiguity and cell differentiation in a lower eucaryote. In Protein Synthesis: Translational and Post-translational Events, (ed. Abraham, A. K., Eikhom, T. S. and Pryme, I. F.), pp. 221232. Clifton, N.J.: Humana Press.Google Scholar
Poldermans, B., Gosen, N. & Van Knippenberg, P. H. (1979). Studies on the function of two adjacent N6, N6- dimethyladenosines near the 3′ end of 16S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein biosynthesis.Google Scholar
Rizet, G. & Engelmann, C. (1949). Contribution à l'étude génétique d'un ascomycète tétra-sporé: Podospora anserina. Revue de Cytologie et de Biologie Végétale 11, 201304.Google Scholar
Taga, M., Nakagawa, H., Tsuda, M. & Veyama, A. (1979). Identification of three different loci controllling kasugamycin resistance in Pyricularia oryzae. Phytopathology 69, 463466.CrossRefGoogle Scholar
Umezawa, H., Okami, Y., Hashimoto, T., Suhara, Y., Hamada, M. & Takeuchi, T. (1965). A new antibiotic, kasugamycin. The Journal of Antibiotics Ser A 18, 101103.Google Scholar
Van Buul, C. P. J. J., Visser, W. & Van Knippenberg, P. M. (1984). Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harbouring the ksg A gene. FEBS Letters 177, 119124.CrossRefGoogle Scholar
Van Knippenberg, P. H., Van Kimmenade, J. M. A. & Heus, H. A. (1984). Phylogeny of the conserved 3′ terminal structure of the RNA of small ribosomal subunits. Nucleic Acids Research 12, 25952604.CrossRefGoogle ScholarPubMed
Van Knippenberg, P. H. (1986). Structural and functional aspects of the N6, N8-dimethyladenosines in 16S ribosomal RNA. In Structure, Function and Genetics of Ribosomes (ed. Hardesty, B. and Kramer, G.), pp. 412424. New York: Springer-Verlag.CrossRefGoogle Scholar
Zickler, D. & Simonet, J. M. (1980). Identification of genecontrolled steps of ascospore development in Podospora anserina. Experimental mycology 4, 191206CrossRefGoogle Scholar