Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T00:12:58.293Z Has data issue: false hasContentIssue false

Identification of the α-galactosidase MEL genes in some populations of Saccharomyces cerevisiae: a new gene MEL11

Published online by Cambridge University Press:  14 April 2009

Gennadi I. Naumov
Affiliation:
State Institute for Genetics and Selection of Industrial Microorganisms, I Dorozhnyi 1, Moscow 113545, Russia Department of Biosciences, Division of Genetics, P.O. Box 56 (Viikinkaari 5), FIN-00014University of Helsinki, Finland
Elena S. Naumova
Affiliation:
State Institute for Genetics and Selection of Industrial Microorganisms, I Dorozhnyi 1, Moscow 113545, Russia Department of Biosciences, Division of Genetics, P.O. Box 56 (Viikinkaari 5), FIN-00014University of Helsinki, Finland
Hilkka Turakainen
Affiliation:
Department of Biosciences, Division of Genetics, P.O. Box 56 (Viikinkaari 5), FIN-00014University of Helsinki, Finland
Matti Korhola*
Affiliation:
Primalco Ltd, P.O. Box 350 FIN-00101 Helsinki, Finland
*
*Matti Korhola, Department of Biosciences, Division of General Microbiology, P.O. Box 56 (Viikinkaari 9), FIN-00014 University of Helsinki, Finland. Tel: (358 0) 70859212, Fax: (358 0) 70859262.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this report we mapped a new MEL11 gene and summarize our population studies of the α-galactosidase MEL genes of S. cerevisiae. The unique family of structural MEL genes has undergone rapid translocations to the telomeres of most chromosomes in some specific Saccharomyces cerevisiae populations inhabiting olive oil processing waste (alpechin) and animal intestines. A comparative study of MEL genes in wine, pathogenic and alpechin populations of S.cerevisiae was conducted using genetic hybridization analysis, molecular karyotypingand Southern hybridization with the MEL1 probe. Five polymeric genes for the fermentation of melibiose, MEL3, MEL4, MEL6, MEL7, MEL11, were identified in an alpechin strain CBS 3081. The new MEL11 gene was mapped by tetrad analysis to the left telomeric region of chromosome I. In contrast, in wine and pathogenic populations of S. cerevisiae, MEL genes have been apparently eliminated. Their rare Mel+ strains carry only one of the MEL1, MEL2, or MEL8 genes. One clinical strain YJM273 was heterozygotic on the MEL1 gene; its mell0 allele did not have a sequence of the gene.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Ammerer, G., (1983). Expression of genes in yeast using the ADC1 promoter. Methods in Enzymology 101, 192201.CrossRefGoogle Scholar
Balzi, E., Chen, W., Ulaszewski, S., Capiaux, E., & Goffeau, A., (1987). The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. Journal of Biological Chemistry 262, 1687116879.CrossRefGoogle ScholarPubMed
Louis, E. J., & Borts, R. H., (1995). A complete set of marked telomeres in Saccharomyces cerevisiae for physical mapping and cloning. Genetics 139, 125136.CrossRefGoogle ScholarPubMed
Louis, E. J., & Haber, J. E., (1990 a). The subtelomeric Y′ repeat family in Saccharomyces cerevisiae. An experimental system for repeated sequence evolution. Genetics 124, 533545.CrossRefGoogle ScholarPubMed
Louis, E. J., & Haber, J. E., (1990 b). Mitotic recombination among subtelomeric Y′ repeats in Saccharomyces cerevisiae. Genetics 124, 547559.CrossRefGoogle ScholarPubMed
Louis, E. J., Naumova, E. S., Lee, A., Naumov, G., & Haber, J. E., (1994). The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics 136, 789802.CrossRefGoogle ScholarPubMed
Lyness, C. A., Jones, C. R., & Meaden, P. G., (1993). The STA2 and MEL1 genes of Saccharomyces cerevisiae are idiomorphic. Current Genetics 23, 9294.CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F., & Sambrook, J., (1982). Molecular Cloning. A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.Google Scholar
McCusker, J. H., Clemons, K. V., Stevens, D. A., & Davis, R. W., (1994). Genetic characterization of pathogenic Saccharomyces cerevisiae isolates. Genetics 136, 12611269.CrossRefGoogle ScholarPubMed
Mortimer, R. K., Contopoulou, C. R., & King, J. S., (1992). Genetic and physical maps of Saccharomyces cerevisiae, edition 11. Yeast 8, 817902.CrossRefGoogle ScholarPubMed
Naumov, G. I., (1977). Comparative genetics of yeast. XVI. Genes for maltose fermentation in Saccharomyces carlsbergensis N.C.Y.C. 74. Soviet Genetics 12, 13741386.Google Scholar
Naumov, G. I., (1988). A hybridological study of the yeast Saccharomyces from the expedition collection of V. I. Kudrjavtzev (during 1934 and 1936). Mikologiya i Fitopatologiya 22, 295301.(in Russian).Google Scholar
Naumov, G. I., (1989). Identification of melibiose fermentation polymeric genes in Saccharomyces cerevisiae. Doklady Biological Sciences 304, 5355.Google ScholarPubMed
Naumov, G. I., & Gudkova, N. K., (1979 a). Comparative genetics of yeast. XVIII. Microevolution of Saccharomyces bayanus. Soviet Genetics 15, 380387.Google Scholar
Naumov, G.I., & Gudkova, N. K., (1979 b). Regressive evolution of Saccharomyces. Doklady Biological Sciences 245, 791793.Google Scholar
Naumov, G. I., Kondratieva, V. I., & Naumova, E. S., (1986). Methods for hybridization of homothallic yeast diplonts and haplonts. Soviet Biotechnology 6, 2932.Google Scholar
Naumov, G. I., Kondratieva, V. I., Naumova, T. I., & Gudkova, N. K., (1983). Genetic bases for classification of Saccharomyces cerevisiae. A study of survival of hybrid ascospores. Zhurnal Obshchei Biologii 44, 648660.(in Russian).Google Scholar
Naumov, G. I., Naumova, E. S., & Gaillardin, C., (1993). Genetic and karyotypic identification of wine Saccharomyces bayanus yeasts isolated in France and Italy. System. Applied Microbiology 16, 274279.CrossRefGoogle Scholar
Naumov, G. I., Naumova, E. S., & Korhola, M., (1992). Genetic identification of natural Saccharomyces sensu stricto yeasts from Finland, Holland and Slovakia. Antonie van Leeuwenhoek 61, 237243.CrossRefGoogle ScholarPubMed
Naumov, G. I., Naumova, E. S., & Korhola, M., (1995 a). Chromosomal polymorphism of MEL genes in some populations of Saccharomyces cerevisiae. FEMS Microbiology Letters 127, 4145.CrossRefGoogle ScholarPubMed
Naumov, G. I., Naumova, E. S., & Louis, E. J., (1995 b). Genetic mapping of the α-galactosidase MEL gene family on right and left telomeres of Saccharomyces cerevisiae. Yeast 11, 481483.CrossRefGoogle ScholarPubMed
Naumov, G. I., Naumova, E. S., & Michels, C. A., (1994). Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus. Genetics 136, 803812.CrossRefGoogle ScholarPubMed
Naumov, G. I., Naumova, E. S., Turakainen, H., Suominen, P., & Korhola, M., (1991). Polymeric genes MEL8, MEL9 and MEL10 — new members of α-galactosidase gene family in Saccharomyces cerevisiae. Current Genetics 20, 269276.CrossRefGoogle ScholarPubMed
Naumov, G. I., Turakainen, H., Naumova, E. S., Aho, S., & Korhola, M., (1990). A new family of polymorphic genes in Saccharomyces cerevisiae: α-galactosidase genes MEL1–MEL7. Molecular and General Genetics 224, 119128.CrossRefGoogle ScholarPubMed
Naumova, E. S., Naumov, G. I., & Korhola, M., (1993). Molecular karyotypes of various genetic lines of the yeast Saccharomyces cerevisiae. Russian Biotechnology 4, 14.Google Scholar
Roberts, C., Ganesan, A. T., & Haupt, W., (1959). Genetics of melibiose fermentation in Saccharomyces italicus var. melibiosi. Heredity 13, 499517.CrossRefGoogle Scholar
Ruohola, H., Liljeström, P. L., Torkkeli, T., Kopu, H., Lehtinen, P., Kalkkinen, N., & Korhola, M., (1986). Expression and regulation of the yeast MEL1 gene. FEMS Microbiology Letters 34, 179185.CrossRefGoogle Scholar
Maria, J. Santa, & Vidal, D., (1970). Segregaciön anormal del ‘mating type’ en Saccharomyces. Inst. Nac. Invest. Agron. 30, 121.Google Scholar
Scheda, R., & Yarrow, D., (1968). Variation in the fermentative pattern of some Saccharomyces species. Archiv für Mikrobiologie 61, 310316.CrossRefGoogle ScholarPubMed
Sherman, F., Fink, G. R., & Lawrence, C. W., (1981). Methods in Yeast Genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.Google Scholar
Turakainen, H., Aho, S., & Korhola, M., (1993 a). MEL gene polymorphism in the genus Saccharomyces. Applied and Environmental Microbiology 59, 26222630.CrossRefGoogle ScholarPubMed
Turakainen, H., Naumov, G., Naumova, E., & Korhola, M., (1993 b). Physical mapping of the MEL gene family in Saccharomyces cerevisiae. Current Genetics 24, 461464.CrossRefGoogle ScholarPubMed
Turakainen, H., Kristo, P., & Korhola, M., (1994). Consideration of the evolution of the Saccharomyces cerevisiae MEL gene family on the basis of the nucleotide sequences of the genes and their flanking regions. Yeast 10, 15591568.CrossRefGoogle ScholarPubMed
Martini, A. Vaughan, & Martini, A., (1987). Three newly delimited species of Saccharomyces sensu stricto. Antonie van Leeuwenhoek 53, 7784.CrossRefGoogle ScholarPubMed
Vollrath, D., Davis, R. W., Connelly, C., & Hieter, P., (1988). Physical mapping of large DNA by chromosome fragmentation. Proceedings of the National Academy of Sciences, USA 85, 60276031.CrossRefGoogle ScholarPubMed