Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T06:23:02.575Z Has data issue: false hasContentIssue false

Hst-3: an X-linked hybrid sterility gene

Published online by Cambridge University Press:  14 April 2009

Jean-Louis Guénet*
Affiliation:
Unité de Génétique des Mammifères de l'Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
Claude Nagamine
Affiliation:
Howard Hughes Medical Institute, University of California, Parnassus and Third Avenues, U-426 San Francisco, CA 94143, USA.
Dominique Simon-Chazottes
Affiliation:
Unité de Génétique des Mammifères de l'Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
Xavier Montagutelli
Affiliation:
Unité de Génétique des Mammifères de l'Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
François Bonhomme
Affiliation:
Institut des Sciences de l'Evolution UA au CNRS 327 Place Eugène Bataillon, 34060 Montpellier Cedex, France
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A gene, Hst-3, responsible for sterility in F1 males from crosses between Mus spretus and laboratory strains of mice such as C57BL/6, has been localized on the distal part of the X chromosome, using both DNA probes and biochemical markers on a panel of Fl(C57BL/6 × SEG) × C57BL/6 backcross males. This gene may be a model for studying mammalian hybrid sterility.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Amar, L. C., Arnaud, J., Cambrou, J., Guénet, J.-L. & Avner, P. R. (1985). Mapping of the mouse X chromosome using random genetic probes and an interspecific mouse cross. EMBO Journal 4, 36953700.CrossRefGoogle Scholar
Basrur, P. K.. (1969). In Hybrid Sterility in Comparative Mammalian Cytogenetics. (ed. Benirochke, K.), pp. 107131. Springer Verlag.CrossRefGoogle Scholar
Bonhomme, F., Guénet, J.-L. & Catalan, J. (1982). Présence d'un facteur de stérilité mâle, Hst-2, segrégeant dans les croisements interspécifiques. M. musculus L. × M. spretus Lataste et lié à Mod-1 et Mpi-1 sur le chromosome 9. Comptes Rendus de l' Académie des Sciences, Paris, t. 294, (19 Avril 1982), 691693.Google Scholar
Bonhomme, F., Martin, S. & Thaler, L. (1978). Hybridization between Mus musculus L. and Mus spretus Lataste under laboratory conditions. Experiments 34, 1140.Google ScholarPubMed
Bonhomme, F., Guénet, J. L., Dod, B., Moriwaki, K. & Bulfield, G. (1987). The polyphyletic origin of laboratory inbred mice and their rate of evolution. Biological Journal of the Linnean Society 30, 5158.CrossRefGoogle Scholar
Church, G. M. & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences, USA 81, 19911995.CrossRefGoogle ScholarPubMed
Feinberg, A. & Vogelstein, b. (1983). A technique for radiolabelling DNA restriction endonucleases fragments to high specify activity. Analytical Biochemistry 132, 613.CrossRefGoogle Scholar
Forejt, J. & Ivanyi, P. (1975). Genetic studies on male sterility of hybrids between laboratory and wild mice (Mus musculus L.). Genetical Research 24, 189206.CrossRefGoogle Scholar
Forejt, J. (1985). Chromosomal and genie sterility of hybrid type in mice and men. Experimental and Clinical Immuno-genelics 2, 106119.Google Scholar
Haldane, J. B. S., (1922). Sex ratio and unisexual sterility in hybrid animals. Journal of Genetics 12, 101109.CrossRefGoogle Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503517.CrossRefGoogle ScholarPubMed