Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T02:16:27.890Z Has data issue: false hasContentIssue false

hobo transposable elements in Drosophila melanogaster and D. simulans

Published online by Cambridge University Press:  14 April 2009

I. A. Boussy
Affiliation:
Department of Biology, Loyola University of Chicago, Chicago, Illinois 60626, USA
S. B. Daniels
Affiliation:
Department of Molecular and Cell Biology, University of Connecticut, Starrs, Connecticut 06268, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genomic patterns of occurrence of the transposable element hobo are polymorphic in the sibling species Drosophila melanogaster and D. simulans. Most tested strains of both species have apparently complete (3·0 kb) and smaller hobo elements (H lines), but in both species some strains completely lack such canonical hobo elements (E lines). The occurrence of H and E lines in D. simulans as well as in D. melanogaster implies that an hypothesis of recent introduction in the latter species is inadequate to explain the phylogenetic occurrence of hobo. Particular internally deleted elements, the approximately 1·5 kb Th1 and Th2 elements, are abundant in many lines of D. melanogaster, and an analogous 1·1 kb internally deleted element, h del sim, is abundant in most lines of D. simulans. Besides the canonical hobo sequences, both species (and their sibling species D. sechellia and D. mauritiana) have many hobo-hybridizing sequences per genome that do not appear to be closely related to the canonical hobo sequence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Anxolabéhère, D., Kidwell, M. G. & Periquet, G. (1988). Molecular characteristics of diverse populations are consistent with the hypothesis of a recent invasion of Drosophila melanogaster by mobile P elements. Molecular Biology and Evolution 5, 252269.Google ScholarPubMed
Black, D. M., Jackson, M. S., Kidwell, M. G. & Dover, G. A. (1987). KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO Journal 6, 41254135.CrossRefGoogle ScholarPubMed
Blackman, R. K. & Gelbart, W. M. (1989). The transposable element hobo of Drosophila melanogaster. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 523529. New York: American Society for Microbiology Publications.Google Scholar
Blackman, R. K., Grimaila, R., Macy, M., Koehler, D. & Gelbart, W. M. (1987). Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49, 497505.CrossRefGoogle ScholarPubMed
Boussy, I. A., Healy, M. J., Oakeshott, J. G. & Kidwell, M. G. (1988). Molecular analysis of the P-M gonadal dysgenesis cline in eastern Australian Drosophila melanogaster. Genetics 119, 889902.CrossRefGoogle Scholar
Bregliano, J. C. & Kidwell, M. G. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 363410. New York: Academic Press.Google Scholar
Brookfield, J. F. Y., Montgomery, E. & Langley, C. H. (1984). Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310, 330332.CrossRefGoogle Scholar
Bucheton, A. (1990). I transposable elements and I–R hybrid dysgenesis in Drosophila. Trends in Genetics 6, 1621.CrossRefGoogle ScholarPubMed
Bucheton, A., Paro, R., Sang, H. M., Pelisson, A. & Finnegan, D. J. (1984). The molecular basis of I–R hybrid dysgenesis in Drosophila melanogaster: identification, cloning and properties of the I factor. Cell 38, 153163.CrossRefGoogle ScholarPubMed
Bucheton, A., Simonelig, M., Vaury, C. & Crozatier, M. (1986). Sequences similar to the I transposable element involved in I–R hybrid dysgenesis in D. melanogaster occur in other Drosophila species. Nature 322, 650652.CrossRefGoogle Scholar
Cariou, M. L. (1987). Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genetical Research 50, 181185.CrossRefGoogle ScholarPubMed
Daniels, S. B., Chovnick, A. & Boussy, I. A. (1990 a). Distribution of the hobo transposable element in the genus Drosophila. Molecular Biology and Evolution 7, 589606.Google ScholarPubMed
Daniels, S. B., Clark, S. H., Kidwell, M. G. & Chovnick, A. (1987). Genetic transformation of Drosophila melanogaster with an autonomous P element: phenotype and molecular analysis of long-established transformed lines. Genetics 115, 711723.CrossRefGoogle Scholar
Daniels, S. B., Peterson, K. R., Strausbaugh, L. D., Kidwell, M. G. & Chovnick, A. (1990 b). Evidence for horizontal transmission of the P transposable element between Drosophila species. Genetics 124, 339355.CrossRefGoogle Scholar
Daniels, S. B. & Strausbaugh, L. D. (1986). The distribution of P-element sequences in Drosophila: the willistoni and saltans species groups. Journal of Molecular Evolution 23, 138148.CrossRefGoogle ScholarPubMed
Engels, W. R. (1981). Hybrid dysgenesis in Drosophila and the stochastic loss hypothesis. Cold Spring Harbor Symposia on Quantitative Biology 45, 561565.CrossRefGoogle ScholarPubMed
Engels, W. R. (1983). The P family of transposable elements in Drosophila. Annual Review of Genetics 17, 315344.CrossRefGoogle Scholar
Engels, W. R. (1986). On the evolution and population genetics of hybrid dysgenesis-causing transposable elements in Drosophila. Philosophical Transactions of the Royal Society, Ser. B 312, 205215.Google ScholarPubMed
Engels, W. R. (1989). P elements in Drosophila melanogaster. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 437484. New York: American Society for Microbiology Publications.Google Scholar
Finnegan, D. J. (1989). The I factor and I–R hybrid dysgenesis in Drosophila melanogaster. In Mobile DNA (ed. Berg, D. E. and Howe, M. M.), pp. 503518. New York: American Society for Microbiology Publications.Google Scholar
Good, A. G., Meister, G. A., Brock, H. W., Grigliatti, T. A. & Hickey, D. A. (1989). Rapid spread of transposable P elements in experimental populations of Drosophila melanogaster. Genetics 122, 387396.CrossRefGoogle ScholarPubMed
Izaabel, H., Ronsseray, S. & Anxolabéhère, D. (1987). Temporal stability of P–M cytotype polymorphism in a natural population of Drosophila melanogaster. Genetical Research 50, 99103.CrossRefGoogle Scholar
Jackson, M. S., Black, D. M. & Dover, G. A. (1988). Amplification of KP elements associated with the repression of hybrid dysgenesis in Drosophila melanogaster. Genetics 120, 10031013.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proceedings of the National Academy of Sciences, USA 80, 16551659.CrossRefGoogle ScholarPubMed
Kidwell, M. G. (1986). Molecular and phenotypic aspects of the evolution of hybrid dysgenesis systems. In Evolutionary Processes and Theory (ed. Karlin, S. and Nevo, E.), pp. 169198. New York: Academic.CrossRefGoogle Scholar
Kidwell, M. G., Frydryk, T. & Novy, J. B. (1983). The hybrid dysgenesis potential of Drosophila melanogaster strains of diverse temporal and geographical natural origins. Drosophila Information Service 61, 97100.Google Scholar
Kidwell, M. G., Kimura, K. & Black, D. M. (1988). Evolution of hybrid dysgenesis potential following P element contamination in Drosophila melanogaster. Genetics 119, 815828.CrossRefGoogle ScholarPubMed
Louis, C. & Yannopoulos, G. (1988). The transposable elements involved in hybrid dysgenesis in Drosophila melanogaster. In Oxford Surveys on Eukaryotic Genes, vol. 5 (ed. MacLean, N.), pp. 205250. New York: Oxford.Google Scholar
Maniatis, T., Frisch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual, 545 pp. New York: Cold Spring Harbor Laboratory.Google Scholar
McGinnis, W., Shermoen, A. W. & Beckendorf, S. K. (1983). A transposable element inserted just 5′ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34, 7584.CrossRefGoogle ScholarPubMed
Olszewska, E. & Jones, K. (1988). Vacuum blotting enhances nucleic acid transfer. Trends in Genetics 4, 9294.CrossRefGoogle ScholarPubMed
Periquet, G., Hamelin, M. H., Bigot, Y. & Hu, K. (1989 a). Presence of the deleted hobo element Th in Eurasian populations of Drosophila melanogaster. Génétique, Sélection et Evolution 21, 107111.Google Scholar
Periquet, G., Hamelin, M. H., Bigot, Y. & Lepissier, A. (1989 b). Geographical and historical patterns of distribution of hobo elements in Drosophila melanogaster populations. Journal of Evolutionary Biology 2, 223229.CrossRefGoogle Scholar
Periquet, G., Hamelin, M. H., Kalmes, R. & Eeken, J. (1990). hobo elements and their deletion-derivative sequences in D. melanogaster and its sibling species D. simulans, D. mauritiana and D. sechellia. Génétique, Sélection et Evolution (in the press).Google Scholar
Ronsseray, S. & Anxolabéhère, D. (1986). Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94, 433440.CrossRefGoogle Scholar
Rushlow, C. A., Bender, W. & Chovnick, A. (1984). Studies on the mechanism of heterochromatic position effect at the rosy locus of Drosophila melanogaster. Genetics 108, 603615.CrossRefGoogle ScholarPubMed
Simmons, G. M. (1986). Gonadal dysgenesis determinants in a natural population of Drosophila melanogaster. Genetics 114, 897918.CrossRefGoogle Scholar
Stacey, S. N., Lansman, R. A., Brock, H. W. & Grigliatti, T. A. (1986). Distribution and conservation of mobile elements in the genus Drosophila. Molecular Biology and Evolution 3, 522534.Google ScholarPubMed
Stamatis, N., Monastirioti, M., Yannopoulos, G. & Louis, C. (1989). The P-M and the 23.5 MRF (hobo) systems of hybrid dysgenesis in Drosophila melanogaster are independent of each other. Genetics 123, 379387.CrossRefGoogle Scholar
Streck, R. D., MacGaffey, J. E. & Beckendorf, S. K. (1986). The structure of hobo transposable elements and their insertion sites. EMBO Journal 5, 36153623.CrossRefGoogle ScholarPubMed
Wahl, G. M., Berger, S. L. & Kimmel, A. R. (1987). Molecular hybridization of immobilized nucleic acids: theoretical concepts and practical considerations. In Guide to Molecular Cloning Techniques. Volume 152 of Methods in Enzymology (ed. Berger, S. L. and Kimmel, A. R.), ch. 43, pp. 399407. New York: Academic.CrossRefGoogle Scholar
Yannopoulos, G., Stamatis, N., Monastirioti, M., Hatzopoulos, P. & Louis, C. (1987). hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5 MRF. Cell 49, 487495.CrossRefGoogle Scholar
Yannopoulos, G., Stamatis, N. & Eeken, J. C. J. (1986). Differences in the cytotype and hybrid dysgenesis inducer ability of different P-strains of Drosophila melanogaster. Experientia 42, 12831285.CrossRefGoogle Scholar