Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T16:24:35.089Z Has data issue: false hasContentIssue false

The hairy ears (Eh) mutation is closely associated with a chromosomal rearrangement in mouse chromosome 15

Published online by Cambridge University Press:  14 April 2009

Muriel T. Davisson*
Affiliation:
The Jackson Laboratory, Bar Harbor, ME 04609, USA
Thomas H. Roderick
Affiliation:
The Jackson Laboratory, Bar Harbor, ME 04609, USA
Ellen C. Akeson
Affiliation:
The Jackson Laboratory, Bar Harbor, ME 04609, USA
Norman L. Hawes
Affiliation:
The Jackson Laboratory, Bar Harbor, ME 04609, USA
Hope O. Sweet
Affiliation:
The Jackson Laboratory, Bar Harbor, ME 04609, USA
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mouse mutation hairy ears (Eh) originated in a neutron irradiation experiment at Oak Ridge National Laboratory. Subsequent linkage studies with Eh and other loci on Chr 15 suggested that it is associated with a chromosomal rearrangement that inhibits recombination since it shows tight linkage with several loci occupying the region extending from congenital goiter (cog) distal to caracul (ca). We report here (1) linkage experiments confirming this effect on recombination and (2) meiotic and mitotic cytological studies that confirm the presence of a chromosomal rearrangement. The data are consistent with the hypothesis of a paracentric inversion in the distal half of Chr 15. The effect of the inversion extends over a minimum of 30 cM, taking into account the genetic data and the cytologically determined chromosomal involvement extending to the region of the telomere.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Adolph, S., Bartram, C. R. & Hameister, H. (1987). Mapping of the oncogenes Myc, and int to the distal part of the mouse chromosome 15. Cytogenetics Cell Genetics 44, 6568.CrossRefGoogle Scholar
Ashley, T. (1988). G-band position effects on meiotic synapsis and crossing over. Genetics 118, 307317.CrossRefGoogle ScholarPubMed
Bangham, J. W. (1965). Hairy ears Eh. Mouse News Letter 33, 68.Google Scholar
Bangham, J. W. (1968). Personal communication. Mouse News Letter 38, 32.Google Scholar
Beamer, W. G., Maltais, L. J., DeBaets, M. H. & Eicher, E. M. (1987). Inherited congenital goiter in mice. Endocrinology 120, 838840.CrossRefGoogle ScholarPubMed
Beier, D. R., Morton, C. C., Leder, A., Wallace, R. & Leder, P. (1989). Perinatal lethality (ple): a mutation caused by integration of a transgene into distal mouse chromosome 15. Genomics 4, 498504.Google Scholar
Davisson, M. T. & Akeson, E. C. (1987). An improved method for preparing G-banded chromosomes from mouse peripheral blood. Cytogenetics Cell Genetics 45, 7074.Google Scholar
Davisson, M. T. & Lewis, S. E. (1990). Chromosome aberrations associated with induced mutations effect on mapping new mutations. In press.Google Scholar
Dresser, M. E. & Moses, M. J. (1979). Silver staining of synaptonemal complexes in surface spreads for light and electron microscopy. Experimental Cell Research 121, 416419.Google Scholar
Eicher, E. M. & Lee, B. K. (1990). The NXSM recombinant inbred strains of mice: Genetic profile for 58 loci including the Mtv proviral loci. Genetics 125, 431446.Google Scholar
Eicher, E. M. & Womack, J. E. (1977). Chromosomal location of soluble glutamic-pyruvic transaminase-1 (Gpt-1) in the mouse. Biochemical Genetics 15, 18.CrossRefGoogle ScholarPubMed
Evans, E. P., Breckon, G. & Ford, C. E. (1964). An airdrying method for meiotic preparations from mammalian testes. Cytogenetics 3, 289294.CrossRefGoogle ScholarPubMed
Evans, E. P. & Phillips, R. J. S. (1975). Inversion hetero-zygosity and the origin of XO daughters of Bpa/ + female mice. Nature 256, 40.CrossRefGoogle Scholar
Evans, E. P. & Phillips, R. J. S. (1978). A phenotypically marked inversion (In(2)2H). Mouse News Letter 58, 44.Google Scholar
Guenet, J-L. (1976). Personal communication. Mouse News Letter 55, 21.Google Scholar
Guenet, J-L. (1980). Ve and Eh. Mouse News Letter 62, 72.Google Scholar
Hameister, H., Adolph, S., Meyer, J. & Schulz, W. A. (1988). Physical and genetic mapping around the Myc locus on murine chromosome 15. Mouse News Letter 82, 112.Google Scholar
Harris, B., Akeson, E., Spencer, C., Cook, S. & Davisson, M. T. (1990). Dorsal dark stripe (dds). Mouse News Letter 86, 238.Google Scholar
Hayakawa, J-I., Nikaido, H. & Koizumi, T. (1985). Assignment of the gene locus for the sixth component (C6) of complement in mice to chromosome 15. Immuno-genetics 22, 637642.Google Scholar
Hogarth, P. M., McKenzie, I. F. C., Sutton, V. R., Curnow, K. M., Lee, B. N. K. & Eicher, E. M. (1987). Mapping of the mouse Ly-6, Xp-14, and Gdc-1 loci to chromosome 15. Immunogenetics 25, 2127.CrossRefGoogle ScholarPubMed
Howell, W. M. & Black, D. A. (1980). Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36, 10141015.Google Scholar
Lane, P. W. & Lui, H. M. (1984). Association of megacolon with a new dominant spotting gene (Dom) in the mouse. Journal of Heredity 75, 435439.Google Scholar
LeClair, K. P., Rabin, M., Nesbitt, M. N., Pravtcheva, D., Ruddle, F. H., Palfree, R. G. E. & Bothwell, A. (1987). Murine Ly-6 multigene family is located on chromosome 15. Proceedings of the National Academy of Sciences, U.S.A. 84, 16381642.Google Scholar
Mather, K. (1938). Statistical Analysis in Biology, p. 56. New York: Interscience Publishers.Google Scholar
Moses, M. J. (1977). Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). I. Morphology of the autosomal complement in spread preparations. Chromosoma 60, 99125.Google Scholar
Roderick, T. H. (1971). Producing and detecting paracentric chromosomal inversions in mice. Mutation Research 11, 5969.CrossRefGoogle ScholarPubMed
Roderick, T. H. (1983). Using inversions to detect and study recessive lethals and detrimentals in mice. In Utilization of Mammalian Specific Locus Studies in Hazard Evaluation and Estimation of Genetic Risk (eds. de Serres, F. J. and Sheridan, W.), p. 135. New York: Plenum Publishing Corporation.CrossRefGoogle Scholar
Russell, E. S. & McFarland, E. C. (1977). Personal communication. Mouse News Letter 56, 42.Google Scholar
Searle, A. G. & Beechey, C. V. (1989). Map of reciprocal translocation, inversions, and insertions. In Genetic Variants and Strains of the Laboratory Mouse (eds. Lyon, M. F. and Searle, A. G.), p. 622. Oxford: Oxford University Press.Google Scholar
Sidman, R. L., Kinney, H. C. & Sweet, H. O. (1985). Transmissible spongiform encephalopathy in the gray tremor mutant mouse. Proceedings of the National Academy of Sciences, U.S.A. 82, 253257.CrossRefGoogle ScholarPubMed