Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:59:47.511Z Has data issue: false hasContentIssue false

Genomic organization in Caenorhabditis elegans: deficiency mapping on linkage group V(left)

Published online by Cambridge University Press:  14 April 2009

Raja E. Rosenbluth*
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
Teresa M. Rogalski
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
Robert C. Johnsen
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
Linda M. Addison
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
David L. Baillie
Affiliation:
Department of Biological Sciences, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this study we genetically analyse a large autosomal region (23 map units) in Caenorhabditis elegans. The region comprises the left half of linkage group V [LGV(left)] and is recombinationally balanced by the translocation eT1(III; V). We have used rearrangement breakpoints to subdivide the region from the left end of LGV to daf-11 into a set of 23 major zones. Twenty of these zones are balanced by eT1. To establish the zones we examined a total of 110 recessive lethal mutations derived from a variety of screening protocols. The mutations identified 12 deficiencies, 1 duplication, as well as 98 mutations that fell into 59 complementation groups, significantly increasing the number of available genetic sites on LGV. Twenty-six of the latter had more than 1 mutant allele. Significant differences were observed among the alleles of only 6 genes, 3 of which have at least one ‘visible’ allele. Several deficiencies and 3 alleles of let-336 were demonstrated to affect recombination. The duplication identified in this study is sDp30(V;X). Lethal mutations covered by sDp30 were not suppressed uniformly in hermaphrodites. The basis for this non-uniformity may be related to the mechanism of X chromosome dosage compensation in C. elegans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 7194.CrossRefGoogle ScholarPubMed
Brown, S. J. (1984). Genetic interactions affecting muscle organization in the nematode C. elegans. Ph.D. Thesis, University of Missouri, Columbia.Google Scholar
Cassada, R., Isnenghi, E., Culotti, M. & von Ehrenstein, G. (1981). Genetic analysis of temperature-sensitive embryo-genesis mutants in Caenorhabditis elegans. Developmental Biology 84, 193205.CrossRefGoogle Scholar
Coulson, A., Sulston, J., Brenner, S. & Karn, J. (1986). Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA 83, 78217825.CrossRefGoogle Scholar
Donati, L. A. M. (1985). A genetic analysis of the right arm of linkage group IV of Caenorhabditis elegans, with emphasis on the sDf2 region. M.Sc. Thesis, Simon Fraser University, Burnaby, B.C.Google Scholar
Edgley, M. L. & Riddle, D. L. (1987). Caenorhabditis elegans. In: Genetic Maps 1987, vol. 4 (ed. O'Brien, S. J.). Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
Emmons, S. W., Klass, M. R. & Hirsh, D. (1979). Analysis of the constancy of DNA sequences during development and the evolution of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA 76, 13331337.CrossRefGoogle ScholarPubMed
Ferguson, E. L. & Horvitz, H. R. (1985). Identification and characterization of 22 genes that affect vulva cell linages of the nematode Caenorhabditis elegans. Genetics 110, 1772.CrossRefGoogle Scholar
Gartler, S. M. & Riggs, A. D. (1983). Mammalian X-chromosome inactivation. Annual Review of Genetics 17, 155190.CrossRefGoogle ScholarPubMed
Herman, R. K. (1978). Crossover suppressors and balanced recessive lethals in Caenorhabditis elegans. Genetics 88, 4965.CrossRefGoogle ScholarPubMed
Hodgkin, J. (1983). X chromosome dosage and gene expression in Caenorhabditis elegans: two unusual dumpy genes. Molecular and General Genetics 192, 452458.CrossRefGoogle Scholar
Horvitz, H. R., Brenner, S., Hodgkin, J. & Herman, R. K. (1979). A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Molecular and General Genetics 175, 129133.CrossRefGoogle ScholarPubMed
Howell, A. M., Gilmour, S. G., Mancebo, R. A. & Rose, A. M. (1987). Genetic analysis of a large autosomal region in Caenorhabditis elegans by the use of a free duplication. Genetical Research 49, 207213.CrossRefGoogle Scholar
Johnsen, R. C., Rosenbluth, R. E. & Baillie, D. L. (1986). Genetic analysis of linkage group V(left) in Caenorhabditis elegans. Genetics 113, s11.Google Scholar
Lefevre, G. (1981). The distribution of randomly recovered X-ray-induced sex-linked genetic effects in Drosophila melanogaster. Genetics 99, 461480.CrossRefGoogle ScholarPubMed
Lefevre, G. & Watkins, W. (1986). The question of the total gene number in Drosophila melanogaster. Genetics 113, 869895.CrossRefGoogle ScholarPubMed
McKim, K. S., Heschl, M. F. P., Rosenbluth, R. E. & Baillie, D. L. (1988). Genetic organization of the unc-60 region in Caenorhabditis elegans. Genetics 118, 4959.CrossRefGoogle ScholarPubMed
Meneely, P. M. & Herman, R. K. (1979). Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. Genetics 92, 99115.CrossRefGoogle Scholar
Meneely, P. M. & Herman, R. K. (1981). Suppression and function of X-linked lethal and sterile mutations in Caenorhabditis elegans. Genetics 97, 6584.CrossRefGoogle ScholarPubMed
Meneely, P. M. & Wood, W. B. (1984). An autosomal gene that effects X-chromosome expression and sex determination in Caenorhabditis elegans. Genetics 106, 2944.CrossRefGoogle ScholarPubMed
Meneely, P. M. & Wood, W. B. (1987). Genetic analysis of X-chromosome dosage compensation in Caenorhabditis elegans. Genetics 117, 2541.CrossRefGoogle ScholarPubMed
Meyer, B. J. & Casson, L. C. (1986). Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell 47, 871881.CrossRefGoogle Scholar
Moerman, D. M. & Baillie, D. L. (1979). Genetic organization in Caenorhabditis elegans: fine structure analysis of the unc-22 gene. Genetics 91, 95103.CrossRefGoogle ScholarPubMed
Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. (1984). Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Roux's Archives of Developmental Biology 193, 267282.CrossRefGoogle Scholar
Park, E.-C. & Horvitz, H. R. (1986). C. elegans unc-105 mutations affect muscle and are suppressed by other mutations that affect muscle. Genetics 113, 853867.CrossRefGoogle ScholarPubMed
Rogalski, T. M. & Baillie, D. L. (1985). Genetic organization of the unc-22 IV gene and the adjacent region in Caenorhabditis elegans. Molecular and General Genetics 201, 409414.CrossRefGoogle ScholarPubMed
Rogalski, T. M., Moerman, D. G. & Baillie, D. L. (1982). Essential genes and deficiencies in the unc-22IV region of Caenorhabditis elegans. Genetics 102, 725736.CrossRefGoogle ScholarPubMed
Rose, A. M. & Baillie, D. L. (1979). The effect of temperature and parental age on recombination and nondisjuction in Caenorhabditis elegans. Genetics 92, 409418.CrossRefGoogle Scholar
Rose, A. M. & Baillie, D. L. (1980). Genetic organization of the region around unc-15 (1), a gene affecting paramyosin in Caenorhabditis elegans. Genetics 96, 639648.CrossRefGoogle Scholar
Rose, A. M., Baillie, D. L., Candido, E. P. M., Beckenbach, K. A. & Nelson, D. (1982). The linkage mapping of cloned restriction fragment length differences in Caenorhabditis elegans. Molecular and General Genetics 188, 286291.CrossRefGoogle Scholar
Rosenbluth, R. E. & Baillie, D. L. (1981). The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans. Genetics 99, 415428.CrossRefGoogle ScholarPubMed
Rosenbluth, R. E., Cuddeford, C. & Baillie, D. L. (1983). Mutagenesis in Caenorhabditis elegans. I. A rapid eukaryotic mutagen test system using the reciprocal trans-location, eTl(III; V). Mutation Research 110, 3948.CrossRefGoogle Scholar
Rosenbluth, R. E., Cuddeford, C. & Baillie, D. L. (1985). Mutagenesis in Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 R of gamma radiation. Genetics 109, 493511.CrossRefGoogle Scholar
Sigurdson, D. C., Spanier, G. J. & Herman, R. K. (1984). Caenorhabditis elegans deficiency mapping. Genetics 108, 331345.CrossRefGoogle ScholarPubMed
Stevens, W. L. (1942). Accuracy of mutation rates. Journal of Genetics 43, 301307.CrossRefGoogle Scholar
Villeneuve, A. M. & Meyer, B. J. (1978). sdc-1: a link between sex determination and dosage compensation in C. elegans. Cell 48, 2537.CrossRefGoogle Scholar
Wood, W. B., Meneely, P., Schedin, P. & Donahue, L. (1985). Aspects of dosage compensation and sex determination in Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology 50, 575583.CrossRefGoogle ScholarPubMed