Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T06:21:26.935Z Has data issue: false hasContentIssue false

Genomic incompatibilities in the hybrid zone between house mice in Denmark: evidence from steep and non-coincident chromosomal clines for Robertsonian fusions

Published online by Cambridge University Press:  14 April 2009

Fabienne Fel-Clair
Affiliation:
Laboratoire Géunétique et Environnement, Institut des Sciences de l' Evolution, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Thomas Lenormand
Affiliation:
Laboratoire Géunétique et Environnement, Institut des Sciences de l' Evolution, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Josette Catalan
Affiliation:
Laboratoire Géunétique et Environnement, Institut des Sciences de l' Evolution, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Jacqueline Grobert
Affiliation:
Laboratoire Géunétique et Environnement, Institut des Sciences de l' Evolution, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Annie Orth
Affiliation:
Laboratoire Génome et Populations, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Pierre Boursot
Affiliation:
Laboratoire Génome et Populations, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Marie-Cecile Viroux
Affiliation:
Unité de Biologie Animate, 5 Place Croix di Sud, 1348 Louvain-la-Neuve, Belgique
Janice Britton-Davidian
Affiliation:
Laboratoire Géunétique et Environnement, Institut des Sciences de l' Evolution, Université Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The pattern of chromosomal variation is investigated in house mice from the Danish hybrid zone between the translocation-prone Mus musculus domesticus and the chromosomally conservative M. m. musculus. The cytogenetic analysis confirmed the non-introgression of three pairs of Robertsonian (Rb) fusions from M. m. domesticus into the M. m. musculus genome. The geographic distribution of two of these Rb fusions was shown to follow staggered chromosomal clines which increased in steepness the closer they were to the centre of the hybrid zone as defined by allozymes. Analysis of alternate hypotheses suggests that chromosomal differentiation of the Danish domesticus occurred after contact was established with musculus. The staggering of the clines would reflect the order of arrival of theRb fusions into the hybrid zone. Several models with different processes of underdominance of the chromosomal heterozygotes are discussed to account for the difference in width between clines. A selective model with increasing levels of genomic underdominance due to interaction with a progressively enriched musculus genome provides the best fit for the observed pattern. Selection against Rb fusions with little effect on the recombination of linked allozyme markers supportsthe view that no reduction in gene flow due to chromosomal heterozygosity is yet apparent through the hybrid zone and that only the centromeric segments of the Rb fusions are incompatible with the musculus genome.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

References

Alibert, P., Renaud, S., Dod, B., Bonhomme, F., & Auffray, J.-C., (1994). Fluctuating asymmetry in the Mus musculus hybrid zone: a heterotic effect in disrupted co-adapted genomes. Proceedings of the Royal Society of London series B-Biological Sciences 258, 5359.Google Scholar
Auffray, J.-C., (1993). Chromosomal divergence in house mice in the light of palaeontology: a colonization-related event?. Quarterly International 19, 2125.CrossRefGoogle Scholar
Auffray, J.-C., & Britton-Davidian, J., (1992). When did the house mouse colonize Europe?. Biological Journal of the Linnean Society 45, 187190.CrossRefGoogle Scholar
Barton, N. H., (1980). The hybrid sink effect. Heredity 44, 277278.CrossRefGoogle Scholar
Barton, N. H., & Bengtsson, B. O., (1986). The barrier to genetic exchange between hybridizing populations. Heredity 57, 357376.CrossRefGoogle Scholar
Barton, N. H., & Gale, K. S., (1993). Genetic analysis of hybrid zones. In Hybrid Zones and the Evolutionary Process. (ed. Harrison, R. G.). pp. 1345. New York: Oxford University Press.CrossRefGoogle Scholar
Barton, N. H., & Hewitt, G. M., (1983). Hybrid zones as barriers to gene flow. Protein Polymorphism: Adaptive and Taxonomic Significance, pp. 341359. Oxford: Blackwell.Google Scholar
Barton, N. H., & Hewitt, G. M., (1985). Analysis of hybrid zones. Annual Review of Ecology and Sysiematics 16, 113148.CrossRefGoogle Scholar
Bauchau, V., Smets, S., Viroux, M.-C., Nootens, D., & de Caritat, A., (1990). Robertsonian translocations in freeliving populations of the house mouse in Belgium. Biological Journal of the Linnean Society 41, 193201.CrossRefGoogle Scholar
Bauchau, V., (1990). Phylogenetic analysis of the distribution of chromosomal races of Mus musculus domesticus Rutty in Europe. Biological Journal of the Linnean Society 41, 171172.CrossRefGoogle Scholar
Bazykin, A. D., (1969). Hypothetical mechanisms of speciation. Evolution 23, 685687.Google Scholar
Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V. M., Moriwaki, K., Nevo, E., & Thaler, L., (1984). Biochemical diversity and evolution in the genus Mus. Biochemical Genetics 22, 275303.CrossRefGoogle ScholarPubMed
Boursot, P., Auffray, J.-C., Britton-Davidian, J., & Bonhomme, F., (1993). The evolution of house mice. Annual Review of Ecology and Systematics 24, 119152.CrossRefGoogle Scholar
Boursot, P., Bonhomme, F., Britton-Davidian, J., Catalan, J., Yonekawa, H., Orsini, P., Gerasimov, S., & Thaler, L., (1984). Introgression différentielle des génomes nucléaires et mitochondriaux chez deux semi-espèces européennes de souris. Comptes Rendus de l' Académie des Sciences Serie III- Sciences de la Vie 299, 365370.Google Scholar
Capanna, E., Citivelli, M. V., & Cristaldi, M., (1977). Chromosomal rearrangements, reproductive isolation and speciation in mammals. The case of Mus musculus. Bollettino di Zoologia 44, 129.CrossRefGoogle Scholar
Coates, D. J., & Shaw, D. D., (1982). The chromosomal component of reproductive isolation in the grasshopper Caledia captiva. I. Meiotic analysis of chiasma distribution patterns in two chromosomal taxa and their F1 hybrids. Chromosoma 86, 509531.CrossRefGoogle Scholar
Coates, D. J., & Shaw, D. D., (1984). The chromosomal component of reproductive isolation in the grasshopper Caledia captiva. III. Chiasma distribution patterns in a new chromosomal taxon. Heredity 53, 85100.CrossRefGoogle Scholar
Corti, M., Ciabatti, M., & Capanna, E., (1990). Parapatric hybridization in the chromosomal speciation of the house mouse. Biological Journal of the Linnean Society 41, 203214.CrossRefGoogle Scholar
Cowell, J. K., (1984). A photographic representation of the variability of G-banded structure of the chromosomes of the mouse karyotype. Chromosoma 89, 294320.CrossRefGoogle ScholarPubMed
Davisson, M. T., & Akeson, E. C., (1993). Recombination suppression by heterozygous Robertsonian chromosomes in the mouse. Genetics 133, 649667.CrossRefGoogle ScholarPubMed
Dod, B., Jermiin, L. S., Boursot, P., Chapman, V. H, Nielsen, J. T., & Bonhomme, F., (1993). Counterselection on sex chromosomes in the Mus musculus European hybrid zone. Journal of Evolutionary Biology 6, 529546.CrossRefGoogle Scholar
Endler, J. A., (1977). Geographic variation, speciation and dines. Princeton, New Jersey, Princeton University Press. Pp. 246.Google Scholar
Ferris, S. D., Sage, R. D., Huang, C. M., Nielsen, J. T., Ritte, U., & Wilson, A. C., (1983). Flow of mitochondrial DNA across a species boundary. Proceedings of the National Academy of Sciences of the United States of America 80, 22902294.CrossRefGoogle ScholarPubMed
Gropp, A., & Winking, H., (1981). Robertsonian translocations: cytology, meiosis, segregation patterns and biological consequences of heterozygozity. In Biology of the house mouse (ed. Berry, R. J.). pp. 141181. London: Academic Press.Google Scholar
Gyllensten, U., & Wilson, A. C., (1987). Interspecific mitochondrial DNA transfer and the colonization of Scandinavia by mice. Genetical Research 49, 2529.CrossRefGoogle ScholarPubMed
Hatfield, T., Barton, N. H., & Searle, J. B., (1992). A model of a hybrid zone between two chromosomal races of the common shrew (Sorex araneus). Evolution 46, 11291145.Google Scholar
Hewitt, G. M., (1989). The subdivision of species by hybrid zones. Speciation and its consequences. Sunderland, Massachusets, Sinauer Associates, Inc. Pp. 85110.Google Scholar
Hewitt, G. M., & Barton, N. H., (1980). The structure and maintenance of hybrid zones as exemplified by Podisma pedestris. Symposium of the Royal Entomological Society of London 10, 149169.Google Scholar
Hunt, W. G., & Selander, R. K., (1973). Biochemical genetics of hybridization in European house mice. Heredity 31, 1133.CrossRefGoogle ScholarPubMed
Lee, M. R., & Elder, . F. B., (1980). Yeast simulation of bone marrow mitosis for cytogenetic investigations. Cytogenetics and Cell Genetics 26, 3640.CrossRefGoogle Scholar
Mongelard, C., (1985). Structures génique et chromosomique des populations robertsoniennes de Mus musculus domesticus en Italie du Nord. Discussion du modèle de spéciation stasipatrique. Doctoral Thesis, Université de Montpellier.Google Scholar
Nachman, M. W., & Searle, J. B., (1995). Why is the house mouse karyotype so variable?. Trends in Ecology and Evolution 10, 397402.CrossRefGoogle ScholarPubMed
Nancé, V., Vanlerberghe, F., Nielsen, J. T., Bonhomme, F., & Britton-Davidian, J., (1990). Chromosomal introgression in house mice from the hybrid zone between M. m. domesticus and M. m. musculus in Denmark. Biological Journal of the Linnean Society 41, 215227.CrossRefGoogle Scholar
Nanda, I., Schneider-Rasp, S., Winking, H., & Schmid, M., (1995). Loss of telomeric sites in the chromosomes of Mus musculus domesticus (Rodentia: Muridae) during Robertsonian rearrangements. Chromosome Research 3, 399409.CrossRefGoogle ScholarPubMed
Pasteur, N., Pasteur, G., Bonhomme, F., Catalan, J., & Britton-Davidian, J., (1987). Practical isozyme genetics. Ellis Horwood Limited, pp. 215.Google Scholar
Prager, E. M., Sage, R. D., Gyllensten, U., Thomas, W. Kelley, Hübner, R., Jones, C. S., Nobles, L., Searle, J. B., & Wilson, A. C., (1993). Mitochondrial DNA sequence diversity and the colonization of Scandinavia by house mice from East Holstein. Biological Journal of the Linnean Society 50, 85122.CrossRefGoogle Scholar
Raymond, M., & Rousset, F., (1995). Genepop (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248249.CrossRefGoogle Scholar
Redi, C. A., Garagna, S., Valle, G. Delia, Bottiroli, G., Dell'Orto, P., Viale, G., Peverali, A., Raimondi, E., & Forejt, J., (1990). Differences in the organization and chromosomal allocation of satellite DNA between the European long tail house mice Mus domesticus and Mus musculus. Chromosoma 99, 1117.CrossRefGoogle Scholar
Rice, W. R., (1989). Analysing tables of statistical tests. Evolution 43, 223225.CrossRefGoogle Scholar
Sage, R. D., Atchley, W. R., & Capanna, E., (1993). House mice as models in systematic biology. Systematic Biology 42, 523561.CrossRefGoogle Scholar
Sage, R. D., Heyneman, D., Lim, K.-C., & Wilson, A. C., (1986 a). Genetic analysis of a hybrid zone between domesticus and musculus mice (Mus musculus complex). hemoglobin polymorphisms. In Current Topics in Microbiology and Immunology, pp. 7585. Berlin-Heidelberg: Springer Verlag.Google Scholar
Scriven, P. N., (1992). Robertsonian translocations introduced into an island population of house mice. Journal of Zoology 227, 493502.CrossRefGoogle Scholar
Seabright, J., (1971). A rapid technique for human chromosomes. Lancet II, 971972.CrossRefGoogle Scholar
Searle, J. B., (1991). A hybrid zone comprising staggered chromosomal clines in the house mouse (Mus musculus domesticus). Proceedings of the Royal Society of London Series B-Biological Sciences 246, 4752.Google ScholarPubMed
Searle, J. B., (1993). Chromosomal hybrid zones in eutherian mammals. In Hybrid zones and the evolutionary process (ed. Harrison, R. G.). pp. 309353. New York: Oxford University Press.CrossRefGoogle Scholar
Searle, J. B., Navarro, Y. N., & Ganem, G., (1993). Further studies of a staggered hybrid zone in Mus musculus domesticus (The house mouse). Heredity 71, 523531.CrossRefGoogle ScholarPubMed
Szymura, J. M., & Barton, N. H., (1986). Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and B. variegata, near Cracow in southern Poland. Evolution 40, 11411159.Google Scholar
Tucker, P. K., Sage, R. D., Warner, J., Wilson, A. C., & Eicher, E. M., (1992). Abrupt clines for sex chromosomes in a hybrid zone between two species of mice. Evolution 46, 11461163.CrossRefGoogle Scholar
Vanlerberghe, F., Boursot, P., Catalan, J., Gerasimov, S., Bonhomme, F., Botev, B. A., & Thaler, L., (1988 b). Analyse génétique de la zone d'hybridation entre les deux sous-espèces de souris Mus musculus domesticus et Mus musculus musculus en Bulgarie. Genome 30, 427437.CrossRefGoogle Scholar
Vanlerberghe, F., Boursot, P., Nielsen, J. T., & Bonhomme, F., (1988 a). A steep cline for mitochondrial DNA in Danish mice. Genetical Research 52, 185193.CrossRefGoogle ScholarPubMed
Vanlerberghe, F., Dod, B., Boursot, P., Bellis, M., & Bonhomme, F., (1986). Absence of Y-chromosome introgression across the hybrid zone between Mus musculus domesticus and Mus musculus musculus. Genetical Research 48, 191197.CrossRefGoogle ScholarPubMed
Virdee, S. R., & Hewitt, G. M., (1994). Clines for hybrid dysfunction in a grasshopper hybrid zone. Evolution 48, 392407.CrossRefGoogle Scholar
Winking, H., Dulic, B., & Bulfield, G., (1988). Robertsonian karyotype variation in the European house mouse, Mus musculus; survey of present knowledge and new observations. Zeitschrift für Säugetierkunde 53, 148161.Google Scholar
Zima, J., Gaichenko, V. A., Macholan, M., Radjabli, S. I, Sablina, O. V., & Wojik, J. M., (1990). Are Robertsonian variations a frequent phenomenon in mouse populations in Eurasia?. Biological Journal of the Linnean Society 41, 229333.CrossRefGoogle Scholar