Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T01:58:50.383Z Has data issue: false hasContentIssue false

Genome size variation in the North American sunfish genus Lepomis (Pisces: Centrarchidae)

Published online by Cambridge University Press:  14 April 2009

Chara J. Ragland
Affiliation:
Department of Wildlife and Fisheries Sciences, Texas A & M University, College Station, Texas 77843, U.S.A.
John R. Gold*
Affiliation:
Department of Wildlife and Fisheries Sciences, Texas A & M University, College Station, Texas 77843, U.S.A.
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Genome sizes (nuclear DNA contents) were documented spectrophotometrically from individuals of each of nine species of the North American centrarchid (sunfish) genus Lepomis. The distributions of DNA values within and among the nine species were essentially normal and continuous, suggesting that changes in DNA quantity in Lepomis are small in amount, involve both gains and losses of DNA, and are cumulative and independent in effect. Significant differences in mean genome size were found between individuals within populations in all nine species and between species. Nested analysis of variance and comparisons of average genome size difference or distance between individuals drawn from different levels of taxonomic organization revealed that the majority of genome size divergence in Lepomis occurs above the hierarchical level of individuals within populations. The Lepomis data when compared to similar data from North American cyprinid fishes appear to suggest that: (i) genome size evolution in these fishes at least follows a continuous rather than a discontinuous mode; (ii) the general predictions of hypothetical models relating genome size variation as a function of organismal position along adaptive continua may be oversimplified, or not applicable to complex, higher eukaryotes; and (iii) changes in genome size in these fishes may be concentrated in speciation episodes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Avise, J. C. (1977). Is evolution gradual or rectangular? Evidence from living fishes. Proceedings of the National Academy of Sciences U.S.A. 74, 50835087.CrossRefGoogle ScholarPubMed
Avise, J. C. (1978). Variances and frequency distributions of genetic distance in evolutionary phylads. Heredity 40, 225237.CrossRefGoogle Scholar
Avise, J. C. & Ayala, F. J. (1975). Genetic change and rates of cladogenesis. Genetics 81, 757773.CrossRefGoogle ScholarPubMed
Avise, J. C. & Gold, J. R. (1977). Chromosomal divergence and speciation in two families of North American fishes. Evolution 31, 113.CrossRefGoogle ScholarPubMed
Bachmann, K., Chambers, K. L. & Price, H. J. (1985). Genome size and natural selection: observation and experiments in plants. In The Evolution of Genome Size (ed. Cavalier-Smith, T.), pp. 267276. New York: John Wiley & Sons.Google Scholar
Bachmann, K., Goin, O. B. & Goin, C. J. (1972). Nuclear DNA amounts in vertebrates. Brookhaven Symposia in Biology 23, 419450.Google ScholarPubMed
Bennett, M. D. (1971). The duration of meiosis. Proceedings of the Royal Society of London B 178, 277299.Google Scholar
Bennett, M. D. (1972). Nuclear DNA content and minimum mitotic time in herbaceous plants. Proceedings of the Royal Society of London B 181, 109135.Google Scholar
Bennett, M. D., Gustafson, J. P. & Smith, J. B. (1977). Variation in nuclear DNA in the genus Secale. Chromosoma 61, 149176.CrossRefGoogle Scholar
Bianchi, N. O., Redi, C., Garagna, C., Capanna, E. & Manfredi-Romanini, M. G. (1983). Evolution of genome size in Akodon (Rodentia, Cricetidae). Journal of Molecular Evolution 19, 362370.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1978). Nuclear volume control by nucleoskeletal DNA, selection for cell volume and growth rate, and the solution of the DNA C-value paradox. Journal of Cell Science 34, 247278.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1980). r- and K-tactics in the evolution of protist developmental systems: cell and genome size, phenotype diversifying selection and cell cycle patterns. Biosystems 12, 4359.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1985 a). Introduction: the evolutionary significance of genome size. In The Evolution of Genome Size (ed. Cavalier-Smith, T.), pp. 136. New York: John Wiley & Sons.Google Scholar
Cavalier-Smith, T. (1985 b). Cell volume and the evolution of eukaryotic genome size. In The Evolution of Genome Size (ed. Cavalier-Smith, T.), pp. 105184. New York: John Wiley & Sons.Google Scholar
Doolittle, W. F. & Sapienza, F. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature (London) 284, 617618.CrossRefGoogle ScholarPubMed
Douglas, M. E. & Avise, J. C. (1982). Speciation rates and morphological divergence in fishes: tests of gradual versus rectangular modes of evolutionary change. Evolution 36, 224232.CrossRefGoogle ScholarPubMed
Eldredge, N. & Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In Models in Paleobiology (ed. Schopf, T. J. M.), pp. 82116. San Francisco: Freeman, Cooper & Co.Google Scholar
Fand, S. B. (1970). Environmental conditions for optimal Feulgen hydrolysis. In Introduction to Quantitative Cytochemistry, vol. ii (ed. Wied, G. L. & Bahr, G. F.), pp. 209221. New York: Academic Press.Google Scholar
Flavell, R. B. (1986). Repetitive DNA and chromosome evolution in plants. Philosophical Transactions of the Royal Society of London. B 312, 227242.Google ScholarPubMed
Flavell, R. B., Bennett, M. D., Smith, J. B. & Smith, D. B. (1974). Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics 12, 257269.CrossRefGoogle ScholarPubMed
Gold, J. R. & Amemiya, C. T. (1987). Genome size variation in North American minnows (Cyprinidae). II. Variation among 20 species. Genome 29, 481489.CrossRefGoogle ScholarPubMed
Gold, J. R. & Price, H. J. (1985). Genome size variation among North American minnows (Cyprinidae). I. Distribution of the variation in five species. Heredity 54, 297305.CrossRefGoogle ScholarPubMed
Gold, J. R., Bennett, L. F. & Gall, G. A. E. (1975). A set of tables for determining minimum sample sizes necessary to show statistically significant differences among treatment groups using analysis of variance. Division of Agricultural Sciences, University of California Special Publication Number 3051, pp. 19, with Tables I–XII.Google Scholar
Hinegardner, R. (1976). Evolution of genome size. In Molecular Evolution (ed. Ayala, F. J.), pp. 179199. Sunderland, Mass.: Sinauer Press.Google Scholar
Hinegardner, R. & Rosen, D. E. (1972). Cellular DNA content and the evolution of teleostean fishes. American Naturalist 106, 621644.CrossRefGoogle Scholar
Humason, G. L. (1979). Animal Tissue Techniques. San Francisco: W. H. Freeman & Company.Google Scholar
Hutchinson, J., Narayan, R. K. J. & Rees, H. (1980). Constraints on the composition of supplementary DNA. Chromosoma 78, 137145.CrossRefGoogle ScholarPubMed
Johnson, O. W., Utter, F. M. & Rabinovitch, P. S. (1987). Interspecies differences in salmonid cellular DNA identified by flow cytometry Copeia: 1001–1009.CrossRefGoogle Scholar
Kauffman, S. (1971). Gene regulation networks: a theory for their global structure and behaviours. In Current Topics in Developmental Biology (ed. Moscona, A. A. & Monroy, A.), pp. 145182. New York: Academic Press.Google Scholar
Kenton, A. (1983). Qualitative and quantitative chromosome changes in the evolution of Gibasis. In Kew Chromosome Conference, vol. ii (ed. Brandham, P. E. & Bennett, M. D.), pp. 273282. London: Allen & Unwin.Google Scholar
Labani, R. M. & Elkington, T. T. (1987). Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity 59, 119128.CrossRefGoogle Scholar
Lee, D. S., Gilbert, C. R., Hocutt, C. H., Jenkins, R. E., McAllister, D. E. & Stauffer, J. R. Jr (1980). Atlas of North American Freshwater Fishes. Raleigh, NC: North Carolina Biological Survey Publication Number 1980–12.Google Scholar
Mayden, R. L. (1986). Speciose and depauperate phylads and tests of punctuated and gradual evolution: fact or artifact? Systematic Zoology 35, 591602.CrossRefGoogle Scholar
Mettler, L. E. & Gregg, T. G. (1969). Population Genetics and Evolution. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Mirsky, A. E. & Ris, H. (1951). The deoxyribonucleic acid content of animal cells and its evolutionary significance. Journal of General Physiology 34, 451462.CrossRefGoogle ScholarPubMed
Morescalchi, A. (1977). Phylogenetic aspects of karyological evidence. In Major Patterns in Vertebrate Evolution (ed. Hecht, M. K., Goody, P. C. & Hecht, B. M.), pp. 149167. New York: Plenum Press.CrossRefGoogle Scholar
Narayan, R. K. J. (1982). Discontinuous DNA variation in the evolution of plant species. The genus Lathyrus. Evolution 36, 877891.CrossRefGoogle ScholarPubMed
Narayan, R. K. J. (1983). Chromosome change in the evolution of Lathyrus species. In Kew Chromosome Conference, vol. ii (ed. Brandham, P. E. & Bennett, M. D.), pp. 243250. London: Allen & Unwin.Google Scholar
Narayan, R. K. J. (1988). Constraints upon the organization and evolution of chromosomes in Allium. Theoretical and Applied Genetics 75, 319329.CrossRefGoogle Scholar
Ohno, S. & Atkin, N. B. (1966). Comparative DNA values and chromosome complements of eight species of fishes. Chromosoma 18, 455466.CrossRefGoogle ScholarPubMed
Orgel, L. E. & Crick, F. H. C. (1980). Selfish DNA: the ultimate parasite. Nature (London) 284, 645646.CrossRefGoogle ScholarPubMed
Pierce, B. A. & Mitton, J. B. (1980). The relationship between genome size and genetic variation. American Naturalist 116, 850861.CrossRefGoogle Scholar
Price, H. J. (1988). Plant genome size and the DNA C-value paradox. Plant Genetics Newsletter 4, 1824.Google Scholar
Price, H. J., Bachmann, K., Chambers, K. L. & Riggs, J. (1980). Detection of intraspecific variation in nuclear DNA content in Microseris douglasii. Botanical Gazette 141, 195198.CrossRefGoogle Scholar
Price, H. J., Chambers, K. L. & Bachmann, K. (1981 a). Geographic and ecological distribution of genomic DNA content variation in Microseris douglasii (Asteraceae). Botanical Gazette 142, 415426.CrossRefGoogle Scholar
Price, H. J., Chambers, K. L. & Bachmann, K. (1981 b). Genome size variation in diploid Microseris bigelovii (Asteraceae). Botanical Gazette 142, 156159.CrossRefGoogle Scholar
Price, H. J., Chambers, K. L., Bachmann, K. & Riggs, J. (1986). Patterns of mean nuclear DNA content in Microseris douglasii (Asteraceae) populations. Botanical Gazette 147, 496507.CrossRefGoogle Scholar
Raina, S. N., Srivastava, P. K. & Ramo Rao, S. (1986). Nuclear DNA variation in Tephrosia. Genetica 69, 2733.CrossRefGoogle Scholar
Rasch, E. M., Barr, H. J. & Rasch, R. W. (1971). The DNA content of sperm of Drosophila melanogaster. Chromosoma 33, 118.CrossRefGoogle ScholarPubMed
Sherwood, S. W. & Patton, J. L. (1982). Genome evolution in pocket gophers (genus Thomomys). II. Variation in cellular DNA content. Chromosoma 85, 163179.CrossRefGoogle ScholarPubMed
Sims, L. E. & Price, H. J. (1985). Nuclear DNA content variation in Helianthus (Asteraceae). American Journal of Botany 72, 12131219.CrossRefGoogle Scholar
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: W. H. Freeman & Sons.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. San Francisco: W. H. Freeman & Sons.Google Scholar
Sparrow, A. H., Price, H. J. & Underbrink, A. G. (1972). A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symposia in Biology 23, 451494.Google ScholarPubMed
Stebbins, G. L. (1966). Processes of Organic Evolution. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Szarski, H. (1983). Cell size and the concept of wasteful and frugal evolutionary strategies. Journal of Theoretical Biology 105, 201209.CrossRefGoogle ScholarPubMed