Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T18:36:16.104Z Has data issue: false hasContentIssue false

Genome size in Tribolium flour-beetles: inter- and intraspecific variation

Published online by Cambridge University Press:  14 April 2009

Asunción Alvarez-Fuster
Affiliation:
Laboratori de Genètica, Departament de Biologia Ambiental, Facultat de Ciències, Universitat de les Illes Batears, 07071 Palma de Mallorca. Spain
Carlos Juan
Affiliation:
Laboratori de Genètica, Departament de Biologia Ambiental, Facultat de Ciències, Universitat de les Illes Batears, 07071 Palma de Mallorca. Spain
Eduard Petitpierre*
Affiliation:
Laboratori de Genètica, Departament de Biologia Ambiental, Facultat de Ciències, Universitat de les Illes Batears, 07071 Palma de Mallorca. Spain
*
Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Eight species of Tribolium and the related species Alphitobius diaperinus have been microdensitometrically analysed by measuring the nuclear content (1C value) of their Feuigenstained spermatids. The range of mean genome sizes goes from 0·157 pg in T. audax to 0·388 pg in T. brevicornis, including five significantly different groups of values. Also, in ail but one species of Tribolium significant intraspecific heterogeneity of genome size was found. The resemblances in genome size are not generally correlated with genetic homologies among species, but there is a highly significant correlation between genome size and spermatid size.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

Bachmann, K., Chambers, K. L. & Price, H. J. (1985). Genome size and natural selection: observation and experiments in plants. In The Evolution of Genome Size (ed. Cavalier-Smith, T.), pp. 267276. New York: John Wiley & Sons.Google Scholar
Bachmann, K., Coin, O. B. & Goin, C. J. (1972). Nuclear DNA amounts in vertebrates. Brookhaven Symposia in Biology 23, 419450.Google ScholarPubMed
Bennett, M. D. (1985). Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics. In UCLA Symposia on Molecular and Cellular Biology, vo1 35, Plant Genetics (ed. Freeling, M.), pp. 283302. New York: Alan Liss.Google Scholar
Bennett, M. D. & Smith, J. B. (1976). Nuclear DNA amounts in Angiosperms. Philosophical Transactions of the Royal Society of London B 274, 227274.Google ScholarPubMed
Bianchi, N. O., Redi, C., Garagna, C., Capanna, E. & Manfredi-Romanini, M. G. (1983). Evolution of genome size in Akodon (Rodentia, Cricetidae). Journal of Molecular Evolution 19, 362370.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1985). Introduction: the evolutionary significance of genome size. In The Evolution of Genome Size (ed. Cavalier-Smith, T.), pp. 105184. New York: John Wiley & Sons.Google Scholar
Ferrari, J. A. & Rai, K. S. (1989). Phenotypic correlates of genome size variation in Aedes albopictus. Evolution 43, 895899.CrossRefGoogle ScholarPubMed
Fox, D. P. (1969). The relationship between DNA values and chromosome volume in the Coleopteran genus Dermestes. Chromosoma 27, 130144.CrossRefGoogle ScholarPubMed
Gold, J. R. & Amemiya, C. T. (1987). Genome size variation in North American minnows (Cyprinidae). II. Variation among 20 species. Genome 29, 481489.CrossRefGoogle ScholarPubMed
Greilhuber, J. & Speta, F. (1985). Geographical variation of genome size at low taxonomic levels in the Scilla bifolia alliance (Hyacinthaceae). Flora 176, 431438.CrossRefGoogle Scholar
Hinegardner, R. (1973). Cellular DNA content of the Mollusca. Comparative Biochemistry and Physiology 47A, 447460.Google Scholar
Hinegardner, R. (1976). Evolution of genome size. In Molecular Evolution (ed. Ayala, F. J.), pp. 179199. Sunderland, MA: Sinauer Associates.Google Scholar
Hinton, H. E. (1948). A synopsis of the genus Tribolium MacLeay with some remarks on the evolution of its species groups. Bulletin of Entomological Research 39, 1355.CrossRefGoogle ScholarPubMed
John, B. & Miklos, G. L. G. (1988). The Eukaryotic Genome in Development and Evolution. London: Allen & Unwin.Google Scholar
Johnson, O. W., Utter, F. M. & Rabinovitch, P. S. (1987). Interspecies differences in salmonid cellular DNA identified by flow cytometry. Copeia 1987, 10011009.CrossRefGoogle Scholar
Juan, C. & Petitpierre, E. (1989). C-banding and DNA content in seven species of Tenebrionidae (Coleoptera). Genome 32, 834839.CrossRefGoogle Scholar
Labani, R. M. & Elkington, T. T. (1987). Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity 59, 119128.CrossRefGoogle Scholar
Laurie, D. A. & Bennett, M. D. (1985). Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation. Heredity 55, 307313.CrossRefGoogle Scholar
McLaren, I. A., Sévigny, J.-M. & Frost, B. W. (1989). Evolutionary and ecological significance of genome sizes in the copepod genus Pseudocalanus. Canadian Journal of Zoology 67, 565569.CrossRefGoogle Scholar
Mirsky, A. E. & Ris, H. (1951). The deoxyribonucleic acid content of animal cells and its evolutionary significance. Journal of General Physiology 34, 451462.CrossRefGoogle ScholarPubMed
Moore, R. D. & Sokoloff, A. (1982). The determination of chromosome number in Tribolium brevicornis and Tribolium anaphe. Tribolium Information Bulletin 22, 116117.Google Scholar
Narayan, R. K. J. (1983). Chromosome change in the evolution of Lathyrus species. In Kew Chromosome Conference, vol. II (ed. Brandham, P. E. and Bennett, M. D.), pp. 243250. London: Allen & Unwin.Google Scholar
Olmo, E. (1983). Nucleotype and cell size in vertebrates: a review. Basic and Applied Histochemistry 27, 227256.Google ScholarPubMed
Price, H. J., Bachmann, K., Chambers, K. L. & Riggs, J. (1980). Detection of intraspecific variation in nuclear DNA content in Microseris douglasii. Botanical Gazette 141, 195198.CrossRefGoogle Scholar
Price, H. J., Chambers, K. L., & Bachmann, K. (1981). Genome size variation in diploid Microseris bigelovii (Asteraceae). Botanical Gazette 142, 415426.CrossRefGoogle Scholar
Ragland, C. J. & Gold, J. R. (1989). Genome size variation in the North American genus Lepomis (Pisces: Centrarchidae). Genetical Research 53, 173182.CrossRefGoogle Scholar
Raina, S. N., Srivastava, P. K. & Ramo, Rao S. (1986). Nuclear DNA variation in Tephrosia. Genetics 69, 2733.Google Scholar
Rao, P. N. & Rai, K. S. (1987). Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes. Heredity 59, 253258.CrossRefGoogle ScholarPubMed
Rayburn, A. L., Price, H. J., Smith, J. D. & Gold, J. R. (1985). C-band heterochromatin and DNA content in Zea mays. American Journal of Botany 72, 16101617.CrossRefGoogle Scholar
Rees, H. & Jones, R. N. (1972). The origin of the wide species variation in nuclear DNA amount. International Review of Cytology 32, 5392.CrossRefGoogle Scholar
Rees, R. W., Fox, D. P. & Mather, E. P. (1976). DNA content, reiteration and satellites in Dermestes. In Current Chromosome Research (ed. Jones, K. and Brandham, P. E.), pp. 3341. Amsterdam, The Netherlands: North Holland.Google Scholar
Sherwood, S. W. & Patton, J. L. (1982). Genome evolution in pocket gophers (genus Thomomys). II. Variation in cellular DNA content Chromosoma 85, 163179.CrossRefGoogle ScholarPubMed
Sims, L. E. & Price, H. J. (1985). Nuclear DNA content variation in Helianthus (Asteraceae). American Journal of Botany 72, 12131219.CrossRefGoogle Scholar
Smith, S. G. (1952). The evolution of heterochromatin in the genus Tribolium (Tenebrionidae: Coleoptera). Chromosoma 4, 585610.CrossRefGoogle ScholarPubMed
Sokal, R. R. & Rohlf, F. J. (1981). Biometry 2nd ed.San Francisco: W. H. Freeman & Sons.Google Scholar
Sokoloff, A. (1966). The Genetics of Tribolium and Related Species. New York: Academic Press.Google Scholar
Sokoloff, A. (1972). The Biology of Tribolium. With Special Emphasis on Genetic Aspects, vol. I. Oxford University Press.Google Scholar
Sokoloff, A. (1974). The Biology of Tribolium. With Special Emphasis on Genetic Aspects, vol. II. Oxford University Press.Google Scholar
Sokoloff, A. (1977). The Biology of Tribolium. With Special Emphasis on Genetic Aspects, vol. III. Oxford University Press.Google Scholar
Sokoloff, A. (1978). Evolutionary trends in Tribolium. Tribolium Information Bulletin 21, 141144.Google Scholar
Sparrow, A. H., Price, H. J. & Underbrink, A. G. (1972). A survey of DNA content per cell and per chromosome of prokaryotic and eukaryotic organisms: some evolutionary considerations. Brookhaven Symposia in Biology 23, 451494.Google ScholarPubMed
Szarski, H. (1976). Cell size and nuclear DNA content in vertebrates. International Review of Cytology 44, 93111.CrossRefGoogle ScholarPubMed
Wool, D. (1982). Critical examination of postulated cladistic relationships among species of flour beetles (Tribolium, Tenebrionidae, Coleoptera). Biochemical Genetics 20, 333349.CrossRefGoogle ScholarPubMed