Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T23:04:49.158Z Has data issue: false hasContentIssue false

Genome evolution in mosquitoes: intraspecific and interspecific variation in repetitive DNA amounts and organization

Published online by Cambridge University Press:  14 April 2009

William C. Black IV
Affiliation:
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
Karamjit S. Rai
Affiliation:
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

DNA reassociation kinetics were used to determine the amounts and organization of repetitive and unique DNA in four mosquito species: Anopheles quadrimaculatus (Say), Culex pipiens (L.), Aedes albopictus (Skuse) and Ae. triseriatus (Say). Intraspecific variation in repetitive DNA amounts was examined in two geographic strains of Ae. albopictus fom Calcutta, India and the island of Mauritius. Repetitive and unique sequences in An. quadrimaculatus were distributed in a pattern of long period interspersion. Repetitive DNA in all other mosquito species exhibited a pattern of short period interspersion. The amounts of fold-back, middle repetitive, and highly repetitive sequences increased with genome size. The amount of foldback DNA increased at a much slower rate than the middle and highly repetitive sequences. Intraspecific variation in genome size in Ae. albopictus was due primarily to the amounts of highly repetitive DNA. S1 nuclease digestion of repetitive DNA in all species revealed a positive correlation between genome size and the proportion of the repetitive DNA consisting of short repeats. The amounts of long and short repeats increased with genome size but short repeats increased at a higher rate. The repetitive DNA of the Mauritius strain contained approximately 15% more short repeats than the Calcutta strain. These findings suggest that genome evolution in mosquitoes has resulted from changes in both the amounts and organization of repetitive elements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Britten, R. J., Graham, D. E. & Neufeld, B. R. (1974). Analysis of repeating DNA sequences by reassociation. In Methods in Enzymology, vol. 29, part E (ed. Grossman, L. and Moldave, K.), pp. 363418. New York: Academic Press.Google Scholar
Britten, R. J., Graham, D. E., Eden, F. C., Painchaud, D. M. & Davidson, E. H. (1976). Evolutionary divergence and length of repetitive sequences in sea urchin DNA. Journal of Molecular Evolution 9, 123.CrossRefGoogle ScholarPubMed
Bouchard, R. A. (1982). Moderately repetitive DNA in evolution. In International Review of Cytology, vol. 76 (ed. Bourne, G. H. and Danielli, J. F.), pp. 113193. New York: Academic Press.Google Scholar
Cairns, J. (1963). The chromosome of E. coli. Cold Spring Harbor Symposium on Quantitative Biology 28, 4346.CrossRefGoogle Scholar
Cavalier-Smith, T. (1980). How selfish is DNA? Nature (Lond.) 285, 617618.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1985). Eukaryotic gene numbers, non-coding DNA, and genome size. In The Evolution of Genome Size (ed. T., Cavalier-Smith), pp. 69103. Chichester: John Wiley & Sons.Google Scholar
Crain, W. R., Eden, F. C., Pearson, W. R., Davidson, E. H. & Britten, R. J. (1976 a). Absence of short period interspersion of repetitive and non-repetitive sequences in the DNA of Drosophila melanogaster. Chromosoma (Berl.) 56, 309326.CrossRefGoogle ScholarPubMed
Crain, W. R., Davidson, E. H. & Britten, R. J. (1976 b). Contrasting patterns of DNA sequence arrangement in Apis mellifera (Honeybee) and Musca domestica (Housefly). Chromosoma (Berl.) 59, 112.CrossRefGoogle ScholarPubMed
Dawkins, R. (1976). The Selfish Gene. London: Oxford University Press.Google Scholar
Davidson, E. H., Galua, G. A., Angerer, R. C. & Britten, R. J. (1975). Comparative aspects of DNA organization in metazoa. Chromosoma (Berl.) 51, 253259.CrossRefGoogle ScholarPubMed
Doolittle, W. F. & Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature (Lond.) 284, 617618.CrossRefGoogle ScholarPubMed
Dover, G. A. & Flavell, R. B. (1982). Genome Evolution. London: Academic Press.Google Scholar
Efstratiadis, A., Crain, W. R., Britten, R. J., Davidson, E. H. & Kafatos, F. C. (1976). DNA sequence organization in the lepidopteran Antheraea pernyi. Proceedings National Academy Science (USA) 73, 22892293.CrossRefGoogle ScholarPubMed
Epplen, J. T., Diedrich, U., Wagenmann, M., Schmidtke, J. & Engel, W. (1979). Contrasting DNA sequence organization patterns in Sauropsidian genomes. Chromosoma (Berl.) 75, 199214.CrossRefGoogle ScholarPubMed
Epplen, J. T., Leipoldt, M., Engel, W. & Schmidtke, J. (1978). DNA sequence organisation in avian genomes. Chromosoma (Berl.) 69, 307321.CrossRefGoogle ScholarPubMed
Gage, L. P. (1974). The Bombyx mori genome: analysis by DNA reassociation kinetics. Chromosoma (Berl.) 45, 2742.CrossRefGoogle ScholarPubMed
Graham, D. E., Neufeld, B. E., Davidson, E. H. & Britten, R. J. (1974). Interspersion of repetitive and nonrepetitive DNA sequences in the sea urchin genome. Cell 1, 127137.CrossRefGoogle Scholar
Jost, E. & Mameli, M. (1972). DNA content in nine species of Nematocera with special reference to the sibling species of the Anopheles maculipennis group and the Culex pipiens group. Chromosoma (Berl.) 37, 201208.CrossRefGoogle Scholar
Laird, C. D. & McCarthy, B. J. (1969). Molecular characterization of the Drosophila genome. Genetics 63, 865882.CrossRefGoogle ScholarPubMed
Lewin, B. (1980). Gene Expression, vol. 2: Eukaryotic Chromosomes, 2nd edn.New York: John Wiley & Sons.Google Scholar
Mandel, M. & Marmur, J. (1968). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. In Methods in Enzymology, vol. 12, part B (ed. Grossman, L. and Moldave, K.), pp. 195206. New York: Academic Press.Google Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory. 545 pp.Google Scholar
McLain, D. K., Rai, K. S. & Fraser, M. J. (1986). Interspecific variation in the abundance of highly repeated DNA sequences in the Aedes scutellaris (Diptera: Culicidae) subgroup. Annals of the Entomological Society of America 79, 784791.CrossRefGoogle Scholar
McLain, D. K., Rai, K. S. & Fraser, M. J. (1987). Intraspecific and interspecific variation in the sequence and abundance of highly repeated DNA among mosquitoes of the Aedes albopictus subgroup. Heredity 58, 373381.CrossRefGoogle ScholarPubMed
Orgel, L. E. & Crick, F. H. C. (1980). Selfish DNA: the ultimate parasite. Nature (Lond.) 284, 604607.CrossRefGoogle ScholarPubMed
Orgel, L. E., Crick, F. H. C. & Sapienza, C. (1980). Selfish DNA. Nature (Lond.) 288, 645646.CrossRefGoogle ScholarPubMed
Rao, P. N. (1985). Nuclear DNA and chromosomal evolution in mosquitoes. Ph.D. dissertation, University of Notre Dame, Notre Dame, Indiana.Google Scholar
Rodriguez, R. L. & Tait, R. C. (1983). Recombinant DNA Techniques: An Introduction. London: Addison-Wesley Publ. Co.Google Scholar
Samols, D. & Swift, H. (1979). Genomic organization in the flesh fly Sarcophaga bullata. Chromosoma (Berl.) 75, 129143.CrossRefGoogle ScholarPubMed
SAS (1988). Statistical Analysis System User's Guide: Statistics. SAS Institute Inc., Cary, North Carolina.Google Scholar
Weiner, A. M., Deiniger, P. L. & Efstratiadis, A. (1986). Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annual Review of Biochemistry 55, 631661.CrossRefGoogle ScholarPubMed
Wells, R., Royer, H. & Hollenberger, C. P. (1976). Non Xenopus-Wke DNA organization in the Chironomus tentans genome. Molecular and General Genetics 147, 4551.CrossRefGoogle ScholarPubMed
Wetmur, J. G. & Davidson, N. (1968). Kinetics of renaturation of DNA. Journal Molecular Biology 31, 349370.CrossRefGoogle ScholarPubMed