Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T12:10:14.489Z Has data issue: false hasContentIssue false

The genetics of Ustilago maydis

Published online by Cambridge University Press:  14 April 2009

Robin Holliday
Affiliation:
John Innes Institute, Bayfordbury, Hertford, Herts.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Many of the Ustilaginales, or smut fungi, appear to have the qualities necessary for the application of modern techniques of microbial genetics. Ustilago maydis is considered the most suitable species.

2. Investigations of the mating system confirm reports that the production of diploid brandspores in the host is controlled by alleles at two loci.

3. Genetic markers were obtained by inducing mutations in a wild-type strain with ultra-violet light. Of 100 biochemical mutants which were isolated, the growth requirements of 94 were identified. Thirty of these were used in genetic tests.

4. The compact growth of colonies on artificial media allowed new techniques to be developed by means of which large samples of progeny could be isolated and identified easily. The analysis of brandspore colonies consisting of the products of single meiotic divisions is the quickest method for detecting linkage, but its accurate measurement appears to be achieved by examining the individual members of tetrads.

5. Linkage was detected relatively rarely, but eight markers, including the a mating-type locus, were assigned to one or other of two linkage groups. Although recombination values were not always determined accurately owing to irregular basidiospore germination, the auxotrophic markers in each group could be mapped in a linear order. Since no indication of other linkage groups was obtained, the genetic evidence is so far consistent with cytological reports that the basic haploid chromosome number is two in the smut fungi.

6. Three linked markers were used to investigate chromatid interference by tetrad analysis. None was detected in a total of eighteen double exchanges.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1961

References

REFERENCES

Ainsworth, G. C. & Sampson, K. (1950). The British Smut Fungi (Ustilaginales). Kew, Surrey: The Commonwealth Mycological Institute.Google Scholar
Barrat, B. W., Newmayer, D., Perkins, D. D. & Garnjobst, L. (1954). Map construction in Neurospora crassa. Advanc. Genet. 6, 193.CrossRefGoogle Scholar
Bauch, R. (1932). Die Sexualität von Ustilago scorzonerae und Ustilago zeae. Phytopath. Z. 5, 315321.Google Scholar
Beadle, G. W. & Coonradt, V. L. (1944). Heterokaryosis in Neurospora crassa. Genetics, 29, 291308.CrossRefGoogle Scholar
Beadle, G. W. & Tatum, E. L. (1941). Genetic control of biochemical reactions in Neurospora. Proc. not. Acad. Sci., Wash., 27, 499506.CrossRefGoogle ScholarPubMed
Beadle, G. W. & Tatum, E. L. (1945). Neurospora. II. Methods of producing and detecting mutations concerned with nutritional requirements. Amer. J. Bot. 32, 678686.CrossRefGoogle Scholar
Bonner, D. (1946). Production of biochemical mutations in Penicillium. Amer. J. Bot. 33, 788791.CrossRefGoogle ScholarPubMed
Boone, D. M., Kline, D. M. & Keitt, G. W. (1958). Venturia inaequalis (Cke.) Wint. XIII. Pathogenicity of induced biochemical mutants. Amer. J. Bot. 44, 791796.CrossRefGoogle Scholar
Bowman, D. H. (1946). Sporidial fusion in Ustilago maydis. J. agric. Res. 72, 233243.Google ScholarPubMed
Buxton, E. W. (1956). Heterokaryosis and parasexual recombination in pathogenic strains of Fusarium oxysporum. J. gen. Microbiol. 15, 133139.CrossRefGoogle ScholarPubMed
Chilton, St. J. P. (1943). A heritable abnormality in the germination of chlamydospores of Ustilago zeae. Phytopathology, 33, 749765.Google Scholar
Christensen, J. J. (1931). Studies on the genetics of Ustilago zeae. Phytopath. Z. 4, 129188.Google Scholar
Christensen, J. J. & Stakman, E. C. (1926). Physiologic specialization and mutation in Ustilago zeae. Phytopathology, 16, 979999.Google Scholar
Christensen, J. J. & Rodenhiser, H. A. (1940). Physiologic specialization and genetics of the smut fungi. Bot. Rev. 6, 389425.CrossRefGoogle Scholar
Devi, P., Pontecorvo, G. & Higginbottom, C. (1951). Mutations affecting the nutritional requirements of Aerobacter aerogenes induced by irradiation of dried cells. J. gen. Microbiol. 5, 781787.CrossRefGoogle ScholarPubMed
Dickinson, S. (1931). Experiments on the physiology and genetics of the smut fungi. Cultural characters. Part II. The effect of certain external conditions on their segregation. Proc. roy. Soc. B, 108, 395423.Google Scholar
Fischer, G. W. (1940). Two cases of haplo-lethal deficiency in Ustilago bullata operative against saprophytism. Mycologia, 32, 275289.CrossRefGoogle Scholar
Fries, N. (1947). Experiments with different methods of isolating physiological mutations of filamentous fungi. Nature, Lond., 159, 199.CrossRefGoogle ScholarPubMed
Halisky, P. M. & Holton, C. S. (1956). Factors for pathogenicity in Ustilago avenae. (Abstr.) Phytopathology, 46, 636.Google Scholar
Hanna, F. W. (1929). Studies on the physiology and cytology of Ustilago zeae and Sorosporium reilianum. Phytopathology, 19, 415442.Google Scholar
Holliday, R. (1956). A new method for the identification of biochemical mutants of microorganisms. Nature, Lond., 178, 987.CrossRefGoogle Scholar
Holliday, R. (1959). The genetics of Ustilago maydis. Ph.D. Thesis, Univ. of Cambridge.Google Scholar
Holton, C. S. (1951). Methods and results of studies on heterothallism and hybridization in Tilletia caries and T. foetida. Phytopathology, 41, 511521.Google Scholar
Holton, C. S. (1953). Physiologic specialization and genetics of the smut fungi. II. Bot. Rev. 19, 187208.CrossRefGoogle Scholar
Huttig, W. (1931). Über den Einfluss der Temperatur auf die Keimung und Geschleeht-sverteilung bei Brandpilzen. Z. Bot. 24, 529557.Google Scholar
Huttig, W. (1933). Über physikalische und chemische Beeinflussungen des Zeitpunktes der Chromosomenreduktion bei Brandpilzen. Z. Bot., 26, 126.Google Scholar
Kernkamp, M. F. & Petty, M. A. (1941). Variation in the germination of chlamydospores of Ustilago zeae. Phytopathology, 31, 333340.Google Scholar
Kharbush, S. S. (1928). Recherches histologiques sur les Ustilaginées. Rev. Path. vég. Ent. agric. 15, 4856.Google Scholar
Kline, D. M., Boone, D. M. & Keitt, G. W. (1958). Venturia inaequalis (Cke.) Wint. XIV. Nutritional control of pathogenicity of certain induced biochemical mutants. Amer. J. Bot. 44, 797803.CrossRefGoogle Scholar
Kniep, H. (1919). Untersuchungen über den Antherenbrand (Ustilago violacea Pers.). Z. Bot. 11, 257284.Google Scholar
Lederberg, J. (1946). Studies in bacterial genetics. J. Bact. 52, 503.Google ScholarPubMed
Lederberg, J. & Lederberg, E. M. (1952). Replica plating and indirect selection of bacterial mutants. J. Bact. 63, 399406.CrossRefGoogle ScholarPubMed
Lederberg, J. & Tatum, E. L. (1946). Detection of biochemical mutants of micro-organisms. J. biol. Chem. 165, 381382.CrossRefGoogle Scholar
Levine, R. P. & Ebersold, W. T. (1958). Gene recombination in Chlamydomonas reinhardi. Cold Spr. Harb. Symp. quant. Biol. 23, 101110.CrossRefGoogle ScholarPubMed
McIlwain, H. & Hughes, D. E. (1944). Biochemical characterization of the action of chemotherapeutic agents. Biochem. J. 38, 187196.CrossRefGoogle ScholarPubMed
Mather, K. (1951). The Measurement of Linkage in Heredity, 2nd ed.London: Methuen.Google Scholar
Papazian, H. P. (1952). The analysis of tetrad data. Genetics, 37, 175188.CrossRefGoogle ScholarPubMed
Perkins, D. D. (1949). Biochemical mutants in the smut fungi Ustilago maydis. Genetics, 34, 607626.CrossRefGoogle Scholar
Perkins, D. D. (1955). Tetrads and crossing-over. J. cell. comp. Physiol. 45 (suppl. 2) 171188.CrossRefGoogle ScholarPubMed
Pomper, S. & Atwood, J. C. (1955). Radiation studies on fungi. Radiation Biology, vol. II, ed. Hollaender, A.. New York: McGraw Hill. pp. 431453.Google Scholar
Pontecorvo, G. (1946). Genetic systems based on heterokaryosis. Cold Spr. Harb. Symp. quant. Biol. 11, 193201.Google Scholar
Pontecorvo, G. (1949). New fields in the biochemical genetics of micro-organisms. Biochem. Soc. Symp. 4, 4050.Google Scholar
Pontecorvo, G., Roper, J. A., Hemmons, L. M., Macdonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advanc. Genet. 5, 142238.Google ScholarPubMed
Rodenhiser, H. A. (1934). Studies on the possible origin of physiologic forms of Sphacelotheca sorghi and S. cruenta. J. agric. Res. 49, 10691086.Google Scholar
Rowell, J. B. (1955 a). Functional role of compatibility factors and an in vitro test for sexual compatibility with haploid lines of Ustilago zeae. Phytopathology, 45, 370374.Google Scholar
Rowell, J. B. (1955 b). Segregation of sex factors in a diploid line of Ustilago zeae induced by alpha radiation. Science, 121, 304306.CrossRefGoogle Scholar
Rowell, J. B. & De Vay, J. E. (1954). Genetics of Ustilago zeae in relation to basic problems of its pathogenicity. Phytopathology, 44, 356362.Google Scholar
Ryan, F. J., Beadle, G. W. & Tatum, E. L. (1943). The tube method of measuring growth rate of Neurospora. Amer. J. Bot. 30, 784799.CrossRefGoogle Scholar
Schmitt, C. G. (1940). Cultural and genetic studies on Ustilago zeae. Phytopathology, 30, 381390.Google Scholar
Schopfer, W. H. & Blumer, S. (1938). Les facteurs de croissance des espèces du genre Ustilago. C. R. Acad. Sci., Paris, 206, 11411143.Google Scholar
Seyfert, R. (1927). Über Schnallenbildung in Paarkernmyzel der Brandpilzen. Z. Bot. 19, 577601.Google Scholar
Sleumer, H. O. (1932). Über Sexualität und Zylologic von Ustilago zeae (Beckm.) Unger. Z. Bot. 25, 209263.Google Scholar
Srb, A. & Horowitz, N. H. (1944). The ornithine cycle in Neurospora and its genetic control. J. biol. Chem. 154, 129139.CrossRefGoogle Scholar
Stakman, E. C. (1936). The problem of specialization and variation in phytopathogenic fungi. Genetica, 18, 372389.CrossRefGoogle Scholar
Stakman, E. C. & Christensen, J. J. (1927). Heterothallism in Ustilago zeae. Phytopathology, 17, 827834.Google Scholar
Stakman, E. C., Kernkamp, N. F., Martin, W. J. & King, T. H. (1943 a). The inheritance of a white mutant character in Ustilago zeae. Phytopathology, 33, 943949.Google Scholar
Stakman, E. C., Kernkamp, N. F., Thomas, H. E. & Martin, W. J. (1943 b). Genetic factors for mutability and mutant characters in Ustilago zeae. Amer. J. Bot. 30, 3748.CrossRefGoogle Scholar
Stevens, K., Melhus, I. E., Semenink, G. & Tiffany, L. (1946). A new method of inoculating some Maydeae with Ustilago zeae (Beckm.) Unger. (Abstr.) Phytopathology, 36, 411.Google Scholar
Strickland, W. N. (1958). An analysis of interference in Aspergillus nidulans. Proc. roy. Soc. B, 149, 82101.Google ScholarPubMed
Tatum, E. L., Barrat, R. W., Fries, N. & Bonner, D. (1950). Biochemical mutant strains of Neurospora produced by physical and chemical treatment. Amer. J. Bot. 37, 3846.CrossRefGoogle Scholar
Wagner, R. P. & Mitchell, K. M. (1955). Genetics and Metabolism. New York: John Wiley & Sons. London: Chapman & Hall.Google Scholar
Whitehouse, H. L. K. (1949). Multiple-allelomorph heterothallism in the fungi. New Phytol. 48, 212244.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1950). Mapping chromosome centromeres by the analysis of unordered tetrads. Nature, Lond., 165, 893.CrossRefGoogle ScholarPubMed
Whitehouse, H. L. K. (1951). A survey of heterothallism in the Ustilaginales. Trans. Brit. mycol. Soc. 34, 340355.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1956). The use of loosely linked genes to estimate chromatid interference by tetrad analysis. C. R. Lab. Carlsberg. sér. physiol. 26, 407422.Google Scholar
Whitehouse, H. L. K. (1958 a). Use of loosely linked genes to estimate chromatid interference by tetrad analysis. Nature, Lond., 182, 11731174.CrossRefGoogle Scholar
Whitehouse, H. L. K. (1958 b). Patterns of interference between cross-overs in Neurospora. (Abstr.) Proc. 10th Int. Congr. Genet. II, 312313.Google Scholar